Accurate and rapid detection of nicosulfuron herbicide residues in field-grown maize is essential for implementing chemical remediation and optimizing spraying strategies. However, current detection methods are costly and time-consuming. This study analyzed residue levels in six maize varieties-both resistant and sensitive types-under two herbicide concentrations, categorizing residues into low, medium, and high levels. We developed the HerbiResNet model to predict and classify herbicide residues in maize leaves using spectral data. The model achieved a coefficient of determination (R²) of 0.88 for residue prediction and an accuracy of 0.87 for residue level classification on the test set, significantly outperforming traditional regression models (SVR, PLSR) and classical neural networks (MLP, AlexNet). Additionally, we explored combining spectral technology with deep learning, revealing strong correlations between specific spectral bands (around 550 nm, 680 nm, 750 nm, and 1000 nm) and herbicide residues as well as physiological changes in maize. This provides a solid theoretical foundation for the broader application of spectral technology in agriculture. Overall, the HerbiResNet model demonstrates substantial potential for precision agriculture and sustainable agricultural practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136724 | DOI Listing |
Environ Pollut
December 2024
Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China. Electronic address:
The proliferation of weeds, pests, and plant diseases in crop cultivation has driven the increased application of herbicide lactofen, insecticide acetamiprid, and fungicide carbendazim, contributing to environmental pollution. Microorganisms are requently employed to remove pesticide residues from the environment. However, Liquid bacterial agents encounter difficulties in transportation and preservation during application and the current immobilized bacterial agents have a single degradation function.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
Uncontrolled use of pesticides in agriculture leads to negative consequences for the environment, as well as for human and animal health. Therefore, timely detection of pesticides will allow application of measures to eliminate the excess of maximum residue limits and reduce possible negative consequences in advance. Common methods of pesticide analysis suffer from high costs, and are time consuming, and labor intensive.
View Article and Find Full Text PDFBull Environ Contam Toxicol
December 2024
Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing, 210023, China.
Atrazine is a predominant herbicide globally, and its residues are commonly found in natural water bodies due to its extensive use. Atrazine is known for its detrimental effects on the reproductive abilities of aquatic plants and animals. Our study explored the impact of maternal exposure to atrazine on the survival and performance of offspring using the water flea Daphnia magna as a model organism.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Department of Environmental Science and Engineering, University of Science and Technology of China, 230026 Hefei, China.
Understanding the environmental fate of chemical herbicides is crucial to sustainable agriculture. Due to their joint-use with nitrogen fertilizers, their residues often coexist with NO in agricultural drainages. In this study, tribenuron-methyl was used as a model to evaluate the role of NO in the phototransformation of chemical herbicides, which was characterized by a two-stage process.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China. Electronic address:
Acetochlor is a widely used and highly effective herbicide. Its overuse poses significant threats to biosecurity and ecological integrity, particularly affecting free-ranging birds. Data on its impact, especially mechanisms of liver toxicity in chickens, are lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!