The frequent occurrence of blooms of Microcystis aeruginosa (M. aeruginosa) and the subsequent release of microcystin-LR (MC-LR) in eutrophic waters pose a serious threat to aquatic ecosystems. This study investigated the optimal conditions for inactivating M. aeruginosa and the degrading MC-LR using direct current glow discharge plasma in liquid phase (DC-LGDP), analyzed the potential inactivation mechanisms and the cell deactivation process of M. aeruginosa. The results showed that DC-LGDP generated reactive species (i.e., •OH, O, and HO), active Cl and electroporation effect collectively contributed to inactivation of M. aeruginosa and degradation of MC-LR. The 97.07 % inactivation efficiency of M. aeruginosa and 94.98 % degradation rate of MC-LR were achieved with higher energy yield and without generating nitrogen oxides. Meanwhile, DC-LGDP destroyed the cell integrity, eliminated their antioxidant capacity and reduced the content of photosynthetic pigments. The transcriptome analysis indicated that the transcripts of genes related to photosynthesis, ribosome biosynthesis, ABC transporters, and nitrogen metabolism pathway in M. aeruginosa were altered by DC-LGDP. This study provides insights into the inactivation of M. aeruginosa by DC-LGDP, while elucidating the potential inactivation mechanisms and the cell deactivation process involved. It may be important for the eco-friendly inactivation of M. aeruginosa blooms in natural water bodies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136738 | DOI Listing |
Quant Plant Biol
December 2024
Department of Biology, Howard University, Washington, DC, USA.
Plant growth and development are tightly regulated by cell division, elongation, and differentiation. A visible plant phenotype at the tissue or organ level is coordinated at the cellular level. Among these cellular regulations (cell division, elongation and differentiation), cell division in plants follows the same universal mechanisms across kingdoms of life, and involves conserved cell cycle regulatory proteins (cyclins, cyclin-dependent kinase and cell cycle inhibitors).
View Article and Find Full Text PDFQuant Plant Biol
December 2024
Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany.
Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
December 2024
Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.
(), a periodontal pathogen, has been implicated in the impairment of anti-tumor responses in colorectal cancer (CRC). The tumor microenvironment in CRC involves tumor-associated macrophages (TAMs), which are pivotal in modulating tumor-associated immune responses. The polarization of TAMs towards an M2-like phenotype promotes CRC progression by suppressing the immune system.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
December 2024
Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People's Republic of China.
Diabetic cardiomyopathy (DCM) is a major complication of type 2 diabetes mellitus (T2DM), but its effective prevention and treatment are still limited. We investigated the effects of GYY4137, a slow-releasing hydrogen sulfide donor, and its downstream mediator forkhead box protein O1 (FOXO1) on T2DM-associated DCM. , T2DM mice were induced by a high-fat diet coupled with streptozotocin injection.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
December 2024
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
Insect protein hydrolysates (PH) are emerging as valuable compounds with biological activity. The aim of the present study was to assess the potential cytoprotective effects of PH from the Black Soldier Fly (BPH, in the range 0.1-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!