A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using machine learning models for predicting monthly iPTH levels in hemodialysis patients. | LitMetric

Using machine learning models for predicting monthly iPTH levels in hemodialysis patients.

Comput Methods Programs Biomed

Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. Electronic address:

Published: November 2024

AI Article Synopsis

  • The study explores the use of machine learning (ML) models to predict intact parathyroid hormone (iPTH) levels in hemodialysis patients, focusing on secondary hyperparathyroidism.
  • A retrospective analysis included 1,351 patients, utilizing various ML models to categorize iPTH levels and determining that the XGBoost model performed the best with a Weighted AUROC score of 0.922.
  • The findings suggest that ML can effectively identify high-risk patients with elevated iPTH levels, highlighting the need for explainable AI methods and adaptable frameworks for future healthcare integration.

Article Abstract

Background And Objective: Intact parathyroid hormone (iPTH), also known as active parathyroid hormone, is an important indicator commonly for monitoring secondary hyperparathyroidism (SHPT) in patients undergoing hemodialysis. The aim of this study was to use machine learning (ML) models to predict monthly iPTH levels in patients undergoing hemodialysis.

Methods: We conducted a retrospective study on patients undergoing regular hemodialysis. Patients' blood examinations data was collected from Taiwan Society of Nephrology - Kidney Dialysis, Transplantation (TSN-KiDiT) registration system, and patients' medications data was collected from Pingtung Christian Hospital (PTCH), Taiwan. We used five different ML models to classify patients into three distinct categories based on their iPTH levels: iPTH < 150, iPTH ≥ 150 & iPTH < 600, and iPTH ≥ 600(pg/ml).

Results: We ultimately included 1,351 patients in our study and processed the data in four different ways. These methods varied based on the duration of the data (either using data from just one month or continuously over three months) and the number of features used (either all 52 features or only 20 most important features identified by SHapley Additive exPlanations (SHAP) analysis). The XGBoost model, using data from a continuous three-month period and all available features, yielded the best Weighted AUROC (0.922).

Conclusions: ML is highly effective in predicting iPTH levels in hemodialysis patients, notably accurate for those with iPTH over 600 pg/ml. This method enables early identification of high-risk patients, reducing reliance on retrospective blood test assessments. Future research should focus on advancing explainable AI methods to foster clinicians' trust, and developing adaptable ML frameworks that could seamlessly integrate with existing healthcare systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2024.108541DOI Listing

Publication Analysis

Top Keywords

ipth levels
16
patients undergoing
12
ipth
10
machine learning
8
learning models
8
monthly ipth
8
levels hemodialysis
8
patients
8
hemodialysis patients
8
parathyroid hormone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!