Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Surface patch binding (SPB)-based protein-polysaccharide assembly complexes are a feasible and eco-friendly way to generate emulsifiers, and their unique interfacial complexation, formed post-emulsification, makes emulsion stability control effortless. We explored the assembly of egg white protein (EWP) with carboxymethyl cellulose (CMC) at varying degrees of substitution (DS). The results demonstrated that EWP, functioning as polyampholytes, assembled with CMC through SPB, driven by hydrophobic and electrostatic interactions. The higher DS improved the surface hydrophobicity of assembly complexes, facilitating their adsorption and rearrangement at the oil-water interface, which led to superior interfacial complexation. These interfacial complexes developed stronger steric hindrances that curbed droplet aggregation, boosted droplet friction, and minimized relative displacement, thus providing high internal phase emulsion (HIPE) multi-scenario stability. This study offers an effective strategy for achieving customized material properties through targeted modulation of interfacial complexation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.142277 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!