Electric arc furnace dust (EAFD) represents hazardous solid waste that poses substantial environmental risks, necessitating the urgent development of green and efficient recycling methods. Biomass, a renewable and carbon-neutral resource, offers a viable solution. This study proposes a synergistic process that integrates biomass gasification with reducing EAFD. The kinetics of zinc removal during the process were examined, and the synergistic reaction mechanisms between biomass gasification and EAFD reduction were analyzed through PY-GC/MS, SEM/EDS, XRD, TEM, and thermodynamic calculations. The findings demonstrated an exceptional zinc removal efficiency of 99.88%, governed primarily by interfacial chemical reactions. The synergistic reactions mutually enhanced the reduction of EAFD and the reforming of pyrolysis products. Furthermore, the process achieved low carbon emissions owing to the carbon cycle established through coupling reactions between the dust and biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2024.11.049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!