Effect of fungicides on soil respiration, microbial community, and enzyme activity: A global meta-analysis (1975-2024).

Ecotoxicol Environ Saf

College of Resources and Environment, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Green and Low-carbon Agriculture in Southwest Mountain, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China. Electronic address:

Published: December 2024

Fungicides effectively prevent and control crop diseases caused by microorganisms; however, they also unintentionally affect soil microorganisms and enzyme activity. This study conducted a meta-analysis of 73 published studies to investigate the effects of fungicide application concentration and duration on soil respiration, microbial diversity, and enzyme activity. Increasing the concentration of fungicide application significantly reduced soil basal respiration and microbial carbon, with inhibitory effects reaching 1.45 % and 7.37 %, respectively, at 5 times the recommended application rate. The application of fungicides significantly reduced the activities of alkaline phosphatase, neutral phosphatase, acid phosphatase, dehydrogenase, and urease, with the activities of alkaline phosphatase and urease decreasing by 15.43 % and 7.76 %, respectively. Additionally, the application of fungicides significantly reduced fungi, actinomycetes, Shannon index, Simpson index, and McIntosh index while not affecting bacterial diversity. When the fungicide concentration is at 0-1 times, 1-5 times, and > 5 times, the number of fungi decreases by 14.53 %, 19.91 %, and 33.81 %, respectively. Temporally, soil basal respiration and microbial carbon significantly declined in the first 0-21d after fungicide application, but no such inhibitory effect was observed after 21d. Even 56 days after using the fungicide, it inhibited the activities of alkaline phosphatase and catalase by 13.14 % and 7.13 %, respectively. As time after the application of fungicides increases, the number of fungi decreases significantly, while the number of actinomycetes gradually recovers. Overall, fungicides inhibit the abundance, diversity, and enzyme activity of soil microorganisms; however, precise control of fungicide dosage is essential to minimize their toxic effects on soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.117433DOI Listing

Publication Analysis

Top Keywords

respiration microbial
16
enzyme activity
16
fungicide application
12
application fungicides
12
activities alkaline
12
alkaline phosphatase
12
soil respiration
8
soil microorganisms
8
diversity enzyme
8
soil basal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!