Controllable surface modification of nanoparticulate drug delivery vectors is key to enhancing specific desirable properties such as colloidal stability, targeting, and stimuli-responsive cargo release. Metal-organic frameworks (MOFs) have been proposed as potential delivery devices, with surface modification achieved by various bioconjugate "click" reactions, including copper-catalysed and strain-promoted azide-alkyne cycloaddition. Herein, we show that photo-induced nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) can be used to surface-modify tetrazole-appended Zr MOFs with maleimides, and vice versa, with the extent of this traceless surface functionalisation controlled by the length of photoirradiation. This "photoclick" surface modification protocol is exemplified by the decorating of carboplatin-loaded MOF-808 with galactose units to target asialoglycoprotein receptors of specific cancer cell types. Targeting towards HepG2 cells, which overexpress these receptors, is indicated by enhanced endocytosis and cytotoxicity in both two- and three-dimensional cell cultures compared to other cell lines. The study shows both the power of the NITEC protocol for functionalisation of MOFs, and also the benefits of carbohydrate targeting in drug delivery vectors, with scope for significant additional work diversifying the surface targeting units available for nanoparticle functionalisation under these mild, biocompatible "photoclick" conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.11.129 | DOI Listing |
Environ Sci Pollut Res Int
December 2024
Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Samayapuram, Trichy, India.
Lubricants are pivotal in mitigating friction and wear between surfaces, ensuring seamless movement of solid objects. However, the predominant use of petroleum-based lubricants in the automotive and industrial ssectors raises substantial concerns for future energy security. The exploration of vegetable oils as an alternative lubricant in the automotive industry was motivated by the depletion of fossil fuels and escalating environmental concerns.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
SARS-CoV-2, the cause of COVID-19, primarily targets lung tissue, leading to pneumonia and lung injury. The spike protein of this virus binds to the common receptor on susceptible tissues and cells called the angiotensin-converting enzyme-2 (ACE2) of the angiotensin (ANG) system. In this study, we produced chimeric Macrobrachium rosenbergii nodavirus virus-like particles, presenting a short peptide ligand (ACE2tp), based on angiotensin-II (ANG II), on their outer surfaces to allow them to specifically bind to ACE2-overexpressing cells called ACE2tp-MrNV-VLPs.
View Article and Find Full Text PDFSci Rep
December 2024
Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.
This paper introduces a novel, compact plasma sterilization system, the Active Plasma Sterilizer (APS), for planetary protection space missions. The development of the APS system is done through iterative testing and design modifications aimed at addressing decontamination modalities for time and temperature, cleaning adhesive surfaces, and cleaning protocols beyond alcohol and bleach. Decontamination testing of Deinococcus radiodurans, Geobacillus stearothermophilus (spore forming bacteria), and Aspergillus fumigatus (fungi) was verified for the APS on relevant materials of 4 to 5 log reduction up to complete killing in 45 min or less.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
To develop an efficient and cost-effective adsorbent for phosphate removal from water bodies, this study utilized natural red clay (RC) as a carrier. The modified red clay (MRC) was prepared through three methods: acid modification, high-temperature calcination, and metal loading. The preparation conditions were optimized, and the adsorption effects on phosphate were compared across these different modifications.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
African swine fever has caused huge losses to the global pig industry. In the absence of effective vaccines, reliable detection methods are crucial. The p30 protein of ASFV is often used as a target for detection due to its high antigenicity in the early stage of virus replication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!