Background: NADPH is an essential co-factor supporting the function of enzymes that participate in both inflammatory and anti-inflammatory pathways in myeloid cells, particularly macrophages. Although individual NADPH-dependent pathways are well characterized, how these opposing pathways are co-regulated to orchestrate an optimized inflammatory response is not well understood. To investigate this, techniques to track the consumption of NADPH need to be applied. Deuterium tracing of NADPH remains the gold standard in the field, yet this setup of mass-spectrometry is technically challenging and not readily available to most research groups. Furthermore, NADPH pools are compartmentalized in various organelles with no known membrane transporters, suggesting that NADPH-dependent pathways are regulated in an organelle-specific manner. Conventional methods such as commercial kits are limited to quantifying NADPH in whole cells and not at the resolution of specific organelles. These limitations reflect the need for a novel assay that can readily measure the consumption rate of NADPH in different organelles.
Methods: We devised an assay that measures the consumption rate of NADPH by glutathione-disulfide reductase (GSR) in the mitochondria and the cytosol of RAW264.7 macrophage cell lines. RAW264.7 cells were transfected with Apollo-NADP+ sensors targeted to the mitochondria or the cytosol, followed by the treatment of 2-deoxyglucose and diamide. Intravital imaging over time then determined GSR-dependent NADPH consumption in an organelle-specific manner.
Discussion: In lipopolysaccharide (LPS)-stimulated RAW264.7 cells, cytosolic and mitochondrial NADPH was consumed by GSR in a time-dependent manner. This finding was cross validated with a commercially available NADPH kit that detects NADPH in whole cells. Loading of RAW264.7 cells with oxidized low-density lipoprotein followed by LPS stimulation elevated GSR expression, and this correlated with a more rapid drop in cytosolic and mitochondrial NADPH in our assay. The current limitation of our assay is applicability to transfectable cell lines, and higher expression of plasmid-encoded sensors relative to endogenous glucose-6-phosphate dehydrogenase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620681 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309886 | PLOS |
Int J Clin Exp Pathol
December 2024
Department of Neurology, Huanggang Central Hospital of Yangtze University Huanggang 438000, Hubei, China.
Objectives: Sulforaphane (SFN), an isothiocyanate in cruciferous plants, has been reported to be effective in treating central nervous system diseases. However, how SFN protects the central nervous system needs further study. The aim of this study was to investigate the neuroprotective effect of SFN and its possible mechanism of action.
View Article and Find Full Text PDFFEBS Open Bio
January 2025
Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
Oxidation of lactate under anaerobic dark fermentative conditions poses an energetic problem. The redox potential of the lactate/pyruvate couple is too electropositive to reduce the physiological electron carriers NAD(P) or ferredoxin. However, the thermophilic, anaerobic, and acetogenic model organism Moorella thermoacetica can grow on lactate but was suggested to have a NAD-dependent lactate dehydrogenase (LDH), based on enzyme assays in cell-free extract.
View Article and Find Full Text PDFJ Nutr
January 2025
USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA. Electronic address:
Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada. Electronic address:
Hyperthermia is an adjuvant to chemotherapy and radiotherapy and sensitizes tumors to these treatments. However, repeated heat treatments result in acquisition of heat resistance (thermotolerance) in tumors. Thermotolerance is an adaptive survival response that appears to be mediated by upregulated cellular defenses.
View Article and Find Full Text PDFSci Rep
January 2025
Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China.
Studies have confirmed that elevated glucose levels could lead to renal fibrosis through the process of ferroptosis. Liraglutide, a human glucagon-like peptide-1 (GLP-1) analogue, is a potential treatment option for diabetes. This study aimed to examine the potential of liraglutide (LIRA) in inhibiting ferroptosis and reducing high glucose-induced renal fibrotic injury in mice, and whether the Fsp1-CoQ10-NAD(P)H signal pathway is a mechanism for this effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!