The outstretched wing phenotype in Drosophila melanogaster can be induced by various genetic mutations and environmental perturbations, yet the role of gut-derived signals in coordinating wing development remains largely unexplored. In this study, we demonstrate that Upd2, secreted from the gut to the wing discs, plays a crucial role in regulating the outstretched wing phenotype. The intestinal precursor cell driver esg-Gal4 exhibits low levels of leaky expression, even in the presence of Gal80 at room temperature (25°C). This leaky expression of TDP-43, Notch, and Yki in intestinal precursor cells leads to a held-out wing phenotype, shortened lifespan, and impaired locomotor function. Although esg-Gal4 is expressed in imaginal discs, overexpression of TDP-43, Notch, or Yki using the wing-specific driver does not result in the outstretched wing. Furthermore, our data indicate that genetic alterations associated with the spread-out wing phenotype originate in enteroblasts (EBs) during early development. RNA sequencing analysis with guts from third instar larvae revealed that the JAK-STAT pathway ligand Upd2 is among the most significantly downregulated transcripts. Notably, ectopic expression of Upd2 in EBs partially rescued the abnormal held-out wing phenotype induced by TDP-43, Notch, and Yki overexpression. Together, our findings identify gut-derived Upd2 cytokine signaling as a key mediator of the outstretched wing phenotype, providing evidence for gut-to-wing communication axis during Drosophila development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202402392R | DOI Listing |
Poult Sci
December 2024
Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands.
Impaired walking ability and leg health are commonly seen in broilers and can negatively impact their welfare. Commonly, walking ability and leg health are assessed manually, but this is time consuming and can be subjective. Automated approaches for scoring walking ability and leg health at the individual level could therefore have great added value.
View Article and Find Full Text PDFNat Genet
January 2025
Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing identifies rare populations that express specific marker transcript combinations, traditional flow sorting requires cell surface markers with high-fidelity antibodies, limiting our ability to interrogate these populations. In addition, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Physiology, Biophysics, and Neurosciences; Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
The mechanisms underlying the establishment of asymmetric structures during development remain elusive. The wing of Drosophila is asymmetric along the Anterior-Posterior (AP) axis, but the developmental origins of this asymmetry is unknown. Here, we investigate the contribution of cell recruitment, a process that drives cell fate differentiation in the Drosophila wing disc, to the asymmetric shape and pattern of the adult wing.
View Article and Find Full Text PDFMed Vet Entomol
December 2024
Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand.
Aedes albopictus (Diptera: Culicidae), commonly known as the Asian tiger mosquito, is an important vector transmitting dangerous arboviruses to humans. This study investigated the phenotypic and genetic variation of this species in Thailand through wing geometric morphometric (GM) and mitochondrial cytochrome c oxidase subunit I (COI) gene sequence analyses. A total of 236 Ae.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
Winged aphids develop more sensitive olfaction than the wingless phenotype to identify potential habitat from afar. Two types of olfactory sensilla, primary rhinarium (PRh) and secondary rhinarium (SRh) are responsible for aphid olfactory perception, of which, SRh is involved in the perception of both E-β-farnesene (EBF) and plant volatiles. Odorant binding proteins (OBPs) play a vital role in the response of insect olfactory nerves located in the rhinarium to external odor stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!