Outstretched wing is controlled by intestinal enteroblasts-derived unpaired 2 cytokine signaling in Drosophila.

FASEB J

Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.

Published: December 2024

AI Article Synopsis

  • The study investigates how gut-derived signals affect wing development in fruit flies (Drosophila melanogaster), particularly focusing on the role of the Upd2 cytokine.
  • It is found that mutations or overexpression of certain genes in intestinal cells can lead to a held-out wing phenotype and other health issues.
  • The research highlights a gut-to-wing communication mechanism, suggesting that manipulating Upd2 expression can potentially correct developmental anomalies in wing formation.

Article Abstract

The outstretched wing phenotype in Drosophila melanogaster can be induced by various genetic mutations and environmental perturbations, yet the role of gut-derived signals in coordinating wing development remains largely unexplored. In this study, we demonstrate that Upd2, secreted from the gut to the wing discs, plays a crucial role in regulating the outstretched wing phenotype. The intestinal precursor cell driver esg-Gal4 exhibits low levels of leaky expression, even in the presence of Gal80 at room temperature (25°C). This leaky expression of TDP-43, Notch, and Yki in intestinal precursor cells leads to a held-out wing phenotype, shortened lifespan, and impaired locomotor function. Although esg-Gal4 is expressed in imaginal discs, overexpression of TDP-43, Notch, or Yki using the wing-specific driver does not result in the outstretched wing. Furthermore, our data indicate that genetic alterations associated with the spread-out wing phenotype originate in enteroblasts (EBs) during early development. RNA sequencing analysis with guts from third instar larvae revealed that the JAK-STAT pathway ligand Upd2 is among the most significantly downregulated transcripts. Notably, ectopic expression of Upd2 in EBs partially rescued the abnormal held-out wing phenotype induced by TDP-43, Notch, and Yki overexpression. Together, our findings identify gut-derived Upd2 cytokine signaling as a key mediator of the outstretched wing phenotype, providing evidence for gut-to-wing communication axis during Drosophila development.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202402392RDOI Listing

Publication Analysis

Top Keywords

wing phenotype
24
outstretched wing
20
tdp-43 notch
12
notch yki
12
wing
9
cytokine signaling
8
intestinal precursor
8
leaky expression
8
held-out wing
8
phenotype
6

Similar Publications

Impaired walking ability and leg health are commonly seen in broilers and can negatively impact their welfare. Commonly, walking ability and leg health are assessed manually, but this is time consuming and can be subjective. Automated approaches for scoring walking ability and leg health at the individual level could therefore have great added value.

View Article and Find Full Text PDF

Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing identifies rare populations that express specific marker transcript combinations, traditional flow sorting requires cell surface markers with high-fidelity antibodies, limiting our ability to interrogate these populations. In addition, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers.

View Article and Find Full Text PDF

The mechanisms underlying the establishment of asymmetric structures during development remain elusive. The wing of Drosophila is asymmetric along the Anterior-Posterior (AP) axis, but the developmental origins of this asymmetry is unknown. Here, we investigate the contribution of cell recruitment, a process that drives cell fate differentiation in the Drosophila wing disc, to the asymmetric shape and pattern of the adult wing.

View Article and Find Full Text PDF

Aedes albopictus (Diptera: Culicidae), commonly known as the Asian tiger mosquito, is an important vector transmitting dangerous arboviruses to humans. This study investigated the phenotypic and genetic variation of this species in Thailand through wing geometric morphometric (GM) and mitochondrial cytochrome c oxidase subunit I (COI) gene sequence analyses. A total of 236 Ae.

View Article and Find Full Text PDF

The morphology and molecular mechanisms of enhanced olfaction in the grain aphid Sitobion miscanthi.

Int J Biol Macromol

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.

Winged aphids develop more sensitive olfaction than the wingless phenotype to identify potential habitat from afar. Two types of olfactory sensilla, primary rhinarium (PRh) and secondary rhinarium (SRh) are responsible for aphid olfactory perception, of which, SRh is involved in the perception of both E-β-farnesene (EBF) and plant volatiles. Odorant binding proteins (OBPs) play a vital role in the response of insect olfactory nerves located in the rhinarium to external odor stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!