Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionq9gacou7ssvmmc2efcldo0s7r5sdra6o): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitrous acid (HONO) serves as the primary source of OH radicals in the atmosphere, exerting significant impacts on atmospheric secondary pollution. The heterogeneous reactions of NO on surfaces and photolysis of particulate nitrate or adsorbed nitric acid are important sources of atmospheric HONO, yet the corresponding kinetic parameters based on laboratory investigations and field observations exhibit considerable variations. In this study, we developed an explainable machine learning model to analyze the HONO budget using two years of summer urban supersite observations. By integrating chemical mechanisms and feature engineering into our machine learning model, we assessed the contributions of different sources to HONO and inferred the kinetic parameters for the primary HONO formation pathways, thereby partially addressing the limitations associated with predetermined rate coefficients. Our findings revealed that the primary source of daytime HONO in the summer was the photolysis of nitric acid adsorbed on both aerosol and ground surfaces, accounting for over 40% of its unknown sources. This was followed by the photoenhanced heterogeneous conversion of NO and the photolysis of particulate nitrate. Additionally, we derived the corresponding kinetic parameters, analyzed their influencing factors, and confirmed that machine learning methods hold great potential for the study of the HONO budget.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c06486 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!