Two-dimensional (2D) metal-organic framework sheets, in comparison to the 3D analogues, offer potential advantages for intercalation of guest components between the layers, exfoliation/dispersion into solutions, and processing into thin films. As a versatile platform for leveraging organic functions, the 2D Zr(IV)-carboxylate net here features a dendritic Sierpinski tritopic linker with conjugated alkyne branches and a photoactive triphenylamine core. The 2D solid can be easily dispersed in water and many other solvents, resulting in stable and fluorescent suspension for sensing nitro aromatic compounds and Fe ions with high quenching efficiencies and ultralow limits of detection. Also, the neighboring alkyne units of the coordination solid undergo thermal cyclization (e.g., at 320 °C) to form cross-linked nanographene-like components to afford robust porosity, which substantially takes up PdCl (atomic ratio of Zr/Pd, 2.4:1) to afford a heterogeneous catalyst for Suzuki-Miyaura coupling reactions─direct in air and without the need for phosphine ligands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c04177 | DOI Listing |
Inorg Chem
December 2024
Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore.
Two-dimensional (2D) metal-organic framework sheets, in comparison to the 3D analogues, offer potential advantages for intercalation of guest components between the layers, exfoliation/dispersion into solutions, and processing into thin films. As a versatile platform for leveraging organic functions, the 2D Zr(IV)-carboxylate net here features a dendritic Sierpinski tritopic linker with conjugated alkyne branches and a photoactive triphenylamine core. The 2D solid can be easily dispersed in water and many other solvents, resulting in stable and fluorescent suspension for sensing nitro aromatic compounds and Fe ions with high quenching efficiencies and ultralow limits of detection.
View Article and Find Full Text PDFNature
February 2021
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
Biochim Biophys Acta
January 2010
Centre de Biophysique Moléculaire, 45071 Orléans, France.
Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that this type of dynamics is already established on the much shorter nanosecond time scale, which is also covered by quasielastic neutron scattering experiments. The autosimilarity of protein dynamics is reflected in long-time memory effects in the underlying diffusion processes, which lead to a non-exponential decay of the observed time correlation functions.
View Article and Find Full Text PDFACS Nano
June 2008
Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
Dodecanethiol-stabilized gold nanoparticles (5 nm diameter) are shown to self-organize to form a two-dimensional hexagonal structure in poly(methyl methacrylate) films upon spin-casting from solution onto a substrate, using high-angle annular dark-field scanning transmission electron microscopy. Through use of the distribution functions describing particle distributions, we show that the particle coarsening dynamics is self-similar, characterized by two distinct growth stages. During the initial stage, coarsening occurs via simultaneous Ostwald ripening and coalescence mechanisms, whereas during the second stage, the dominant coarsening mechanism is coalescence.
View Article and Find Full Text PDFMol Cell Proteomics
September 2005
Biological Engineering Division, Massachusetts Institute of Technnology, Cambridge, Massachusetts 02139, USA.
Ligand binding to cell surface receptors initiates a cascade of signaling events regulated by dynamic phosphorylation events on a multitude of pathway proteins. Quantitative features, including intensity, timing, and duration of phosphorylation of particular residues, may play a role in determining cellular response, but experimental data required for analysis of these features have not previously been available. To understand the dynamic operation of signaling cascades, we have developed a method enabling the simultaneous quantification of tyrosine phosphorylation of specific residues on dozens of key proteins in a time-resolved manner, downstream of epidermal growth factor receptor (EGFR) activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!