AI Article Synopsis

  • This study investigates how the length of alkyl chains in alkyltriethylammonium-based ionic liquids affects both dynamic heterogeneity and dynamic behavior during transitions.
  • The researchers used techniques like differential scanning calorimetry and broadband dielectric spectroscopy to show that these ionic liquids are great at forming glass and have good ionic conductivity at room temperature.
  • Results indicate that as the alkyl chain length increases, the number of correlated molecules at the glass transition decreases and the temperature where complex dynamics begin also rises.

Article Abstract

This study explores the impact of alkyl chain length on dynamic heterogeneity and dynamic crossover in alkyltriethylammonium-based ionic liquids ([TEA-R][TFSI]) with varying alkyl chain lengths (R = C6, C8, and C10). Using differential scanning calorimetry and broadband dielectric spectroscopy, we observed that these ionic liquids are excellent glassformers with notable ionic conductivity at room temperature. Furthermore, the number of dynamically correlated molecules at the glass transition temperature, reflecting the dynamic heterogeneity, is exceptionally small for TEA-R ILs and becomes more reduced with longer alkyl chains. Moreover, the temperature dependence of conductivity requires two Vogel-Fulcher-Tammann equations with distinct sets of fitting parameters for an accurate description. The crossover temperature , indicating the transition to complex dynamics, increases with the alkyl chain length.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c05070DOI Listing

Publication Analysis

Top Keywords

alkyl chain
16
chain length
12
ionic liquids
12
dynamically correlated
8
correlated molecules
8
crossover alkyltriethylammonium-based
8
alkyltriethylammonium-based ionic
8
dynamic heterogeneity
8
alkyl
5
length magnitude
4

Similar Publications

n-Alkyltrimethylammonium bromide (CTAB)-based deep eutectic solvent (DESs) has potential in the efficient delignification and utilization of carbohydrates in biomass. In this research, DESs containing Brønsted acid and Lewis acid were prepared with CTAB (alkyl-chain length 12-18), organic acids and metal chlorides, and the optimal treatment conditions were acquired by pretreatment optimization. Through the pretreatment with TTAB/LCA/Fe (1:4:0.

View Article and Find Full Text PDF

Cellulose-based poly(ionic liquid)s: Correlations between degree of substitution and alkyl side chain length with conductive and morphological properties.

Int J Biol Macromol

January 2025

Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:

Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.

View Article and Find Full Text PDF

Superhydrophobic and Self-Healing Porous Organic Macrocycle Crystals for Methane Purification under Humid Conditions.

J Am Chem Soc

January 2025

Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.

Purifying methane from natural gas using adsorbents not only requires the adsorbents to possess excellent separation performance but also to overcome additional daunting challenges such as humidity interference and durability requirements for sustainable use. Herein, porous organic crystals of a new macrocycle () with superhydrophobic and self-healing features are prepared and employed for the purification of methane (>99.99% purity) from ternary methane/ethane/propane mixtures under 97% relative humidity.

View Article and Find Full Text PDF

This study explores the immobilization of lipase from Candida rugosa (CRL) on hemp tea waste to catalyze the esterification of oleic acid with primary aliphatic C2-C12 alcohols. in a solvent-free system. The immobilization method employed was adsorption, chosen for its simplicity, low cost, and ability to preserve enzyme activity.

View Article and Find Full Text PDF

"Popping the Ion-Basket": Enhancing Thermoelectric Performance of Conjugated Polymers by Blending with Latently Dissociable Perovskite Quantum Dots.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

A novel additive method to boost the Seebeck coefficient of doped conjugated polymers without a significant loss in electrical conductivity is demonstrated. Perovskite (CsPbBr) quantum dots (QDs) passivated by ligands with long alkyl chains are mixed with a conjugated polymer in a solution phase to form polymer-QD blend films. Solution sequential doping of the blend film with AuCl solution not only doped the conjugated polymer but also decomposed the QDs, resulting in a doped conjugated polymer film embedded with separated ions dissociated from the QDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!