Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optical frequency comb synthesizers, operating in the harmonic regime, are metrological sources in which the emitted optical power is concentrated in a few modes, spaced by several multiples of the cavity free spectral range (FSR). This behavior reflects in a large correlation degree and, in principle, in an increased optical power per mode. In miniaturized quantum cascade lasers (QCLs), harmonic frequency combs (HFCs) are hence particularly attracting to explore quantum correlation effects between adjacent harmonic modes, enabled by the inherently large gain media third-order Kerr nonlinearity, even if controlled generation of stable HFCs of predefined order, is typically demanding in such electrically pumped sources. Here, we demonstrate stable 2 order and 3 order HFC emission in terahertz frequency QCLs by respectively patterning an individual or a couple of equally spaced distributed multilayer graphene absorbers on the top metallic waveguides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501973 | PMC |
http://dx.doi.org/10.1515/nanoph-2023-0912 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!