Neural network-assisted meta-router for fiber mode and polarization demultiplexing.

Nanophotonics

Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan 430072, China.

Published: September 2024

AI Article Synopsis

  • Advancements in computer science have led to a significant increase in data transmission demands, particularly in fiber communications, highlighting the need for improved mode demultiplexing devices.
  • Current mode demultiplexers are limited, focusing mainly on one-dimensional divisions, which restricts their effectiveness in complex data environments.
  • The introduction of a neural network-assisted meta-router that can recognize multiple dimensions of optical fiber modes offers a more efficient solution, enhancing the versatility and scalability of data transmission technologies.

Article Abstract

Advancements in computer science have propelled society into an era of data explosion, marked by a critical need for enhanced data transmission capacity, particularly in the realm of space-division multiplexing and demultiplexing devices for fiber communications. However, recently developed mode demultiplexers primarily focus on mode divisions within one dimension rather than multiple dimensions (i.e., intensity distributions and polarization states), which significantly limits their applicability in space-division multiplexing communications. In this context, we introduce a neural network-assisted meta-router to recognize intensity distributions and polarization states of optical fiber modes, achieved through a single layer of metasurface optimized via neural network techniques. Specifically, a four-mode meta-router is theoretically designed and experimentally characterized, which enables four modes, comprising two spatial modes with two polarization states, independently divided into distinct spatial regions, and successfully recognized by positions of corresponding spatial regions. Our framework provides a paradigm for fiber mode demultiplexing apparatus characterized by application compatibility, transmission capacity, and function scalability with ultra-simple design and ultra-compact device. Merging metasurfaces, neural network and mode routing, this proposed framework paves a practical pathway towards intelligent metasurface-aided optical interconnection, including applications such as fiber communication, object recognition and classification, as well as information display, processing, and encryption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501066PMC
http://dx.doi.org/10.1515/nanoph-2024-0338DOI Listing

Publication Analysis

Top Keywords

polarization states
12
neural network-assisted
8
network-assisted meta-router
8
fiber mode
8
transmission capacity
8
space-division multiplexing
8
intensity distributions
8
distributions polarization
8
neural network
8
spatial regions
8

Similar Publications

Buyang Huanwu Decoction prevents hemorrhagic transformation after delayed t-PA infusion via inhibiting NLRP3 inflammasome/pyroptosis associated with microglial PGC-1α.

J Ethnopharmacol

December 2024

Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China. Electronic address:

Ethnopharmacological Relevance: Delayed tissue-type plasminogen activator (t-PA) thrombolysis, which has a restrictive therapeutic time window within 4.5 h following ischemic stroke (IS), increases the risk of hemorrhagic transformation (HT) and subsequent neurotoxicity. Studies have shown that the NLRP3 inflammasome activation reversely regulated by the PGC-1α leads to microglial polarization and pyroptosis to cause damage to nerve cells and the blood-brain barrier.

View Article and Find Full Text PDF

An AP2/ERF transcription factor GhERF109 negatively regulates plant growth and development in cotton.

Plant Sci

December 2024

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address:

Cotton is an important source of natural fibers. The AP2/ethylene response factor (ERF) family is one of the largest plant-specific transcription factors (TFs) groups, playing key roles in plant growth and development. However, the role of ERF TFs in cotton's growth and development remains unclear.

View Article and Find Full Text PDF

Enabling Electric Field Model of Microscopically Realistic Brain.

Brain Stimul

December 2024

Department of Electrical and Computer Eng., Worcester Polytechnic Inst., Worcester MA USA; Department of Mathematical Sciences, Worcester Polytechnic Inst., Worcester MA USA.

Background: Modeling brain stimulation at the microscopic scale may reveal new paradigms for various stimulation modalities.

Objective: We present the largest map to date of extracellular electric field distributions within a layer L2/L3 mouse primary visual cortex brain sample. This was enabled by the automated analysis of serial section electron microscopy images with improved handling of image defects, covering a volume of 250 × 140 × 90 μm³.

View Article and Find Full Text PDF

Radiotherapy, employing high-energy rays to precisely target and eradicate tumor cells, plays a pivotal role in the treatment of various malignancies. Despite its therapeutic potential, the effectiveness of radiotherapy is hindered by the tumor's inherent low radiosensitivity and the immunosuppressive microenvironment. Here we present an innovative approach that integrates peroxynitrite (ONOO)-mediated radiosensitization with the tumor-associated neutrophils (TANs) polarization for the reversal of immunosuppressive tumor microenvironment (TME), greatly amplifying the potency of radiotherapy.

View Article and Find Full Text PDF

Knowledge about seafloor depth, or bathymetry, is crucial for various marine activities, including scientific research, offshore industry, safety of navigation, and ocean exploration. Mapping the central Arctic Ocean is challenging due to the presence of perennial sea ice, which limits data collection to icebreakers, submarines, and drifting ice stations. The International Bathymetric Chart of the Arctic Ocean (IBCAO) was initiated in 1997 with the goal of updating the Arctic Ocean bathymetric portrayal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!