Complex vector light fields have become a topic of late due to their exotic features, such as their non-homogeneous transverse polarisation distributions and the non-separable coupling between their spatial and polarisation degrees of freedom (DoF). In general, vector beams propagate in free space along straight lines, being the Airy-vector vortex beams the only known exception. Here, we introduce a new family of vector beams that exhibit novel properties that have not been observed before, such as their ability to freely accelerate along parabolic trajectories. In addition, their transverse polarisation distribution only contains polarisation states oriented at exactly the same angle but with different ellipticity. We anticipate that these novel vector beams might not only find applications in fields such as optical manipulation, microscopy or laser material processing but also extend to others.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501207 | PMC |
http://dx.doi.org/10.1515/nanoph-2021-0255 | DOI Listing |
Sci Rep
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
RIKEN Center for Advanced Photonics, RIKEN, 519-1399 Aramaki-Aoba, Sendai, Miyagi, 980-0845, Japan.
This study presents a generalized design strategy for novel terahertz-wave polarization space-division multiplexing meta-devices, functioning as multi-polarization generators, modulators, and analyzers. It introduces the spin-decoupled phase control method by combining gradient phase design with circular polarization multiplexing techniques, enabling exceptional flexibility in controlling the polarization directions and spatial distributions of multiple output beams. The meta-device M-4D is significantly demonstrated as proof of concept, which converts an incident linearly polarized wave into four beams with distinct polarization angles.
View Article and Find Full Text PDFNanophotonics
April 2024
School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
The generation of vector beams using metasurfaces is crucial for the manipulation of light fields and has significant application potential, ranging from classical physics to quantum science. This paper introduces a novel dielectric metasurface composed of quarter-wave plate (QWP) meta-atoms, known as a QWP metasurface, designed to generate focused vector beams (VBs) of Bell-like states under right circularly polarized illumination. The propagation phase imparted on both the co- and cross-polarized components of the output field constructs hyperbolic and helical phase profiles with topological charge , whereas the Pancharatnam-Berry (PB) phase acts only on the cross-polarized component to construct another helical phase profile with topological charge .
View Article and Find Full Text PDFIn recent years, structured beams have emerged as an attractive and promising area of research, and nondiffracting beams and vector beams stand out as two particularly important categories of structured beams. Recognizing the significance of both beams, it is valuable to build a connection between these two kinds of structured beams. Here, we propose a kind of multi-periodic full Poincaré beam (MP-FPB), whose polarization states can cover the Poincaré sphere (PS) surface multiple times.
View Article and Find Full Text PDFNanophotonics
February 2024
Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
Cylindrical vector beams (CVBs) hold considerable promise as high-capacity information carriers for multiplexing holography due to their mode orthogonality. In CVB holography, phase holograms are encoded onto the wave-front of CVBs with different mode orders while preserving their independence during reconstruction. However, a major challenge lies in the limited ability to manipulate the spatial phase and polarization distribution of CVBs independently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!