Stimulated parametric down-conversion is a nonlinear optical process that can be used for phase conjugation and frequency conversion of an optical field. A precise description of the outgoing stimulated field has been developed for the case where the input pump and seed fields are coherent. However, partially coherent beams can have interesting and important characteristics that are absent in coherent beams. One example is the twist phase, a novel optical phase that can appear in partially coherent Gaussian beams and gives rise to a nonzero orbital angular momentum. Here, we consider stimulated down-conversion for partially coherent input fields. As a case study, we use twisted Gaussian Schell-Model beams as the seed and pump beams in stimulated parametric down-conversion. It is shown both theoretically and experimentally that the stimulated idler beam can be written as a twisted Gaussian Schell-Model beam, where the beam parameters are determined entirely by the seed and pump. When the pump beam is coherent, the twist phase of the idler is the conjugate of that of the seed. These results could be useful for the correction of wavefront distortion such as in atmospheric turbulence in optical communication channels, and synthesis of partially coherent beams.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501682 | PMC |
http://dx.doi.org/10.1515/nanoph-2021-0502 | DOI Listing |
Partially coherent beams are renowned for their inherent resilience against environmental perturbations. However, traditional versions are prone to distortion due to light diffraction, which presents significant challenges for related applications such as information transfer. In this paper, we theoretically and experimentally construct a non-diffraction, partially coherent Pearcey beam.
View Article and Find Full Text PDFIn the field of image processing, optical neural networks offer advantages such as high speed, high throughput, and low energy consumption. However, most existing coherent optical neural networks (CONN) rely on coherent light sources to establish transmission models. The use of laser inputs and electro-optic modulation devices at the front end of these neural networks diminishes their computational capability and energy efficiency, thereby limiting their practical applications in object detection tasks.
View Article and Find Full Text PDFScintillation restricts the development of free space optical communication in near-space hypersonic vehicles. We derived analytical formulae for the on-axis scintillation index of a partially coherent flat-topped beam in a bidirectional turbulent atmosphere and plasma link based on the Collins formula. The numerical results indicate that over long-distance propagation ranges, the on-axis scintillation index of a partially coherent flat-topped beam in bidirectional transmission is smaller than that of a Gaussian Schell model beam under the same conditions.
View Article and Find Full Text PDFQuantitative phase imaging (QPI) has become a valuable tool in the field of biomedical research due to its ability to quantify refractive index variations of live cells and tissues. For example, three-dimensional differential phase contrast (3D DPC) imaging uses through-focus images captured under different illumination patterns deconvoluted with a computed 3D phase transfer function (PTF) to reconstruct the 3D refractive index. In conventional 3D DPC with semi-circular illumination, partially spatially coherent illumination often diminishes phase contrast, exacerbating inherent noise, and can lead to a large number of zero values in the 3D PTF, resulting in strong low-frequency artifacts and deteriorating imaging resolution.
View Article and Find Full Text PDFSpatial anti-bunching, in contrast to the well-known bunching behavior observed in classical light sources, describes a situation where photons tend to avoid each other in space, resulting in a reduced probability of detecting two or more photons in proximity. This anti-bunching effect, a hallmark of nonclassical light, signifies a deviation from classical intensity fluctuations and has been observed not only in free electrons and entangled photon pairs but also in chaotic-thermal light. This work investigates the generation mechanism of spatial anti-bunching correlation in random light fields, leveraging the wandering of light centers to induce a second-order coherence degree below unity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!