In recent years, active metasurfaces have emerged as a reconfigurable nanophotonic platform for the manipulation of light. Here, application of an external stimulus to resonant subwavelength scatterers enables dynamic control over the wavefront of reflected or transmitted light. In principle, active metasurfaces are capable of controlling key characteristic properties of an electromagnetic wave, such as its amplitude, phase, polarization, spectrum, and momentum. A 'universal' active metasurface should be able to provide independent and continuous control over all characteristic properties of light for deterministic wavefront shaping. In this article, we discuss strategies for the realization of this goal. Specifically, we describe approaches for high performance active metasurfaces, examine pathways for achieving two-dimensional control architectures, and discuss operating configurations for optical imaging, communication, and computation applications based on a universal active metasurface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501666 | PMC |
http://dx.doi.org/10.1515/nanoph-2022-0155 | DOI Listing |
Nanoscale
January 2025
School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.
Low-frequency noise in detection systems significantly affects the performance of ultrasensitive and ultracompact spin-exchange relaxation-free atomic magnetometers. High frequency modulation detection helps effectively suppress the 1/ noise and enhance the signal-to-noise ratio, but conventional modulators are bulky and restrict the development of integrated atomic magnetometer modulation-detection systems. Resonant metasurface-based thin-film lithium-niobate (TFLN) active optics can modulate free-space light within a compact configuration.
View Article and Find Full Text PDFWe present the first, to our knowledge, metasurface holographic display method with exceptional fidelity and minimal edge noise, based on highly uniform flat-top light generated by a digital micromirror device (DMD). Based on the error-diffusion algorithm and iterative refinement process, the amplitude distribution of the initial Gaussian light was dynamically closed-loop modulated, and the standard difference of the intensity of the 3 mm diameter center flat-top beam was reduced to less than 3.4%.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
Nanostructured dielectric metasurfaces offer unprecedented opportunities to control light-matter momentum exchange, and thereby the forces and torques that light can exert on matter. Here we introduce optical metasurfaces as components of ultracompact untethered microscopic metaspinners capable of efficient light-induced rotation in a liquid environment. Illuminated by weakly focused light, a metaspinner generates torque via photon recoil through the metasurfaces' ability to bend light towards high angles despite their sub-wavelength thickness, thereby creating orbital angular momentum.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China.
The continuous expansion of wireless communication application scenarios demands the active tuning of electromagnetic (EM) metamaterials, which is essential for their flexible adaptation to complex EM environments. However, EM reconfigurable systems based on intricate designs and smart materials often exhibit limited flexibility and incur high manufacturing costs. Inspired by mechanical metastructures capable of switching between multistable configurations under repeated deformation, we propose a planar kirigami frequency selective surface (FSS) that enables mechanical control of its resonant frequency.
View Article and Find Full Text PDFNano Lett
January 2025
Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!