A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced cutoff energies for direct and rescattered strong-field photoelectron emission of plasmonic nanoparticles. | LitMetric

The efficient generation, accurate detection, and detailed physical tracking of energetic electrons are of applied interest for high harmonics generation, electron-impact spectroscopy, and femtosecond time-resolved scanning tunneling microscopy. We here investigate the generation of photoelectrons (PEs) by exposing plasmonic nanostructures to intense laser pulses in the infrared (IR) spectral regime and analyze the sensitivity of PE spectra to competing elementary interactions for direct and rescattered photoemission pathways. Specifically, we measured and numerically simulated emitted PE momentum distributions from prototypical spherical gold nanoparticles (NPs) with diameters between 5 and 70 nm generated by short laser pulses with peak intensities of 8.0 × 10 and 1.2 × 10 W/cm, demonstrating the shaping of PE spectra by the Coulomb repulsion between PEs, accumulating residual charges on the NP, and induced plasmonic electric fields. Compared to well-understood rescattering PE cutoff energies for strong-field photoemission from gaseous atomic targets (10× the ponderomotive energy), our measured and simulated PE spectra reveal a dramatic cutoff-energy increase of two orders of magnitude with a significantly higher contribution from direct photoemission. Our findings indicate that direct PEs reach up to 93 % of the rescattered electron cutoff energy, in contrast to 20 % for gaseous atoms, suggesting a novel scheme for the development of compact tunable tabletop electron sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501197PMC
http://dx.doi.org/10.1515/nanoph-2023-0120DOI Listing

Publication Analysis

Top Keywords

cutoff energies
8
direct rescattered
8
laser pulses
8
enhanced cutoff
4
direct
4
energies direct
4
rescattered strong-field
4
strong-field photoelectron
4
photoelectron emission
4
emission plasmonic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!