Effectiveness of multi-junction cells in near-field thermophotovoltaic devices considering additional losses.

Nanophotonics

Department of Mechanical Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon-si 34141, South Korea.

Published: March 2024

AI Article Synopsis

  • Thermophotovoltaic (TPV) energy converters can efficiently transform thermal radiation into electrical energy, with diverse applications including solar energy collection and waste heat recovery.
  • Near-field TPV (NF-TPV) devices use photon tunneling to enhance power output density but face challenges from losses related to high photocurrent densities and scalability issues.
  • This study evaluates multi-junction NF-TPV devices, introduces methods to assess additional loss impacts, and offers a framework for improving performance across various parameters, ultimately guiding the design of scalable and high-performing TPV systems.

Article Abstract

Thermophotovoltaic (TPV) energy converters hold substantial potential in converting thermal radiation from high-temperature emitters into electrical energy through photovoltaic (PV) cells, offering applications ranging from solar energy harvesting to waste heat recovery. Near-field TPV (NF-TPV) devices, focused on enhancing power output density (POD), exhibit unique potential by harnessing photon tunneling. However, this potential can be mitigated by additional losses arising from high photocurrent densities and corresponding scalability issues. This study comprehensively investigates the effectiveness of multi-junction-based NF-TPV devices, accounting for additional losses. We propose two approximative expressions to quantify the impact of additional losses and characterize current density-voltage curves. Verification against rigorously optimized results establishes a criterion for effective performance. Our method provides precise POD estimations even for devices with 10 or more subcells, facilitating performance analysis across parameters like vacuum gap distance, cell width, emitter temperature, and the number of subcells compared to far-field counterparts. This research outlines a roadmap for the scalable design of NF-TPV devices, emphasizing the role of multi-junction PV cells. The analytical framework we developed will provide vital insights for future high-performance TPV devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502035PMC
http://dx.doi.org/10.1515/nanoph-2023-0572DOI Listing

Publication Analysis

Top Keywords

additional losses
16
nf-tpv devices
12
multi-junction cells
8
devices
6
effectiveness multi-junction
4
cells near-field
4
near-field thermophotovoltaic
4
thermophotovoltaic devices
4
devices considering
4
additional
4

Similar Publications

Copy number variants (CNVs) are prevalent in both diploid and haploid genomes, with the latter containing a single copy of each gene. Studying CNVs in genomes from single or few cells is significantly advancing our knowledge in human disorders and disease susceptibility. Low-input including low-cell and single-cell sequencing data for haploid and diploid organisms generally displays shallow and highly non-uniform read counts resulting from the whole genome amplification steps that introduce amplification biases.

View Article and Find Full Text PDF

Purpose: Cryptosporidium spp. and Giardia duodenalis are zoonotic protozoan parasites that are widely seen in domestic and wild animals worldwide. While these pathogens, which affect the digestive system of the hosts, cause high economic losses in animal breeding, they are also considered an important public health problem.

View Article and Find Full Text PDF

To improve the inadequate reliability of the grid that has led to a worsening energy crisis and environmental issues, comprehensive research on new clean renewable energy and efficient, cost-effective, and eco-friendly energy management technologies is essential. This requires the creation of advanced energy management systems to enhance system reliability and optimize efficiency. Demand-side energy management systems are a superior solution for multiple reasons.

View Article and Find Full Text PDF

Small rodents can cause problems on farms such as infrastructure damage, crop losses or pathogen transfer. The latter threatens humans and livestock alike. Frequent contacts between wild rodents and livestock favour pathogen transfer and it is therefore important to understand the movement patterns of small mammals in order to develop strategies to prevent damage and health issues.

View Article and Find Full Text PDF

Sugarcane smut caused by is a global sugarcane disease, and studying its molecular pathogenesis is crucial for discovering new prevention and control targets. This study was based on the transcriptome sequencing data of two isolates with different pathogenicities ( and ) of the and screened out a gene encoding the Major Facility Superfamily (MFS) sugar transporter protein and named it . Knockout mutants ( and ) and complementary mutants ( and ) were obtained through polyethylene glycol (PEG)-mediated protoplast transformation technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!