First- and second-order topological phases, capable of inherent protection against disorder of materials, have been recently experimentally demonstrated in various artificial materials through observing the topologically protected edge states. Topological phase transition represents a new class of quantum critical phenomena, which is accompanied by the changes related to the bulk topology of energy band structures instead of symmetry. However, it is still a challenge to directly observe the topological phase transitions defined in terms of bulk states. Here, we theoretically and experimentally demonstrate the direct observation of multifarious topological phase transitions with real-space indicator in a single photonic chip, which is formed by integration of 324 × 33 waveguides supporting both first- and second-order topological phases. The trivial-to-first-order, trivial-to-second-order and first-to-second-order topological phase transitions signified by the band gap closure can all be directly detected via photon evolution in the bulk. We further observe the creation and destruction of gapped topological edge states associated with these topological phase transitions. The bulk-state-based route to investigate the high-dimensional and high-order topological features, together with the platform of freely engineering topological materials by three-dimensional laser direct writing in a single photonic chip, opens up a new avenue to explore the mechanisms and applications of artificial devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501473 | PMC |
http://dx.doi.org/10.1515/nanoph-2021-0559 | DOI Listing |
Nanophotonics
January 2025
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
Topological insulators and bound states in the continuum represent two fascinating topics in the optical and photonic domain. The exploration of their interconnection and potential applications has emerged as a current research focus. Here, we investigated non-Hermitian photonics based on a parallel cascaded-resonator system, where both direct and indirect coupling between adjacent resonators can be independently manipulated.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Université de Lorraine, CNRS, Institut Jean Lamour, Nancy, 54000, France.
ℤ-classified higher-order topological insulators (HOTIs) with chiral-symmetric higher-order topological phases protected by multipole chiral numbers (MCNs) have attracted extensive interest recently. However, how to design artificial ℤ-classified HOTIs with multiple topological phases remains an unresolved issue. Here, multiorbital degrees of freedom are introduced to acoustic crystals and the various methods of topological phase transitions are achieved for the orbital ℤ-classified HOTIs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Indian Institute of Science, Bangalore 560012, India.
The quest for anisotropic superconductors has been a long-standing pursuit due to their potential applications in quantum computing. In this regard, experimentally, d-wave and anisotropic s-wave superconducting order parameters are predominantly observed, while p-wave superconductors remain largely elusive. Achieving p-wave superconductivity in topological phases is highly desirable, as it is considered suitable for creating topologically protected qubits.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
Zintl compounds have garnered research interest due to their diverse technological applications. Utilizing first-principles calculations, we performed a systematic study of ABX (A = Li, Na, K, Rb, or Cs; B = Si, Ge, Sn, or Pb; and X = P, As, Sb, or Bi) Zintl materials with the 6 KSnSb-type structure. Notably, six ABX Zintl compounds (RbSiBi, CsSiBi, LiGeBi, KGeBi, RbGeBi, and CsGeBi) were found to have topologically nontrivial phases, as demonstrated by the invariant computed using the hybrid functional HSE06.
View Article and Find Full Text PDFUltrasonics
January 2025
New Frontiers of Sound Science and Technology Center, University of Arizona, Tucson, AZ 85721, USA; Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA.
We demonstrate an integrated non-destructive inspection methodology that employs the nonlinear ultrasonics-based sideband peak counting (SPC) technique in conjunction with topological acoustics (TA) sensing to comprehensively characterize the acoustic response of steel plates that contain differing levels of damage. By combining the SPC technique and TA, increased sensitivity to defect/damage detection as well as the ability to spatially resolve the presence of defects was successfully established. Towards this end, using a Rockwell hardness indenter, steel plates were subject to one, three and five centrally located indentations respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!