Multimode silicon photonics, leveraging mode-division multiplexing technologies, offers significant potential to increase capacity of large-scale multiprocessing systems for on-chip optical interconnects. These technologies have implications not only for telecom and datacom applications, but also for cutting-edge fields such as quantum and nonlinear photonics. Thus, the development of compact, low-loss and low-crosstalk multimode devices, in particular mode exchangers, is crucial for effective on-chip mode manipulation. This work introduces a novel mode exchanger that exploits the properties of subwavelength grating metamaterials and symmetric Y-junctions, achieving low losses and crosstalk over a broad bandwidth and a compact size of only 6.5 µm × 2.6 µm. The integration of SWG nanostructures in our design enables precise control of mode exchange through different propagation constants in the arms and metamaterial, and takes advantage of dispersion engineering to broaden the operating bandwidth. Experimental characterization demonstrates, to the best of our knowledge, the broadest operational bandwidth covering from 1,420 nm to 1,620 nm, with measured losses as low as 0.5 dB and extinction ratios higher than 10 dB. Enhanced performance is achieved within a 149 nm bandwidth (1,471-1,620 nm), showing measured losses below 0.4 dB and extinction ratios greater than 18 dB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501059PMC
http://dx.doi.org/10.1515/nanoph-2024-0291DOI Listing

Publication Analysis

Top Keywords

mode exchanger
8
measured losses
8
extinction ratios
8
broadband mode
4
exchanger based
4
based subwavelength
4
subwavelength y-junctions
4
y-junctions multimode
4
multimode silicon
4
silicon photonics
4

Similar Publications

The marginal wells in low-permeability oil fields are characterized by small storage size, scattered distribution, intermittent production, etc. The construction of large-scale gathering pipelines has large investment. So the current production mode is featured by single well tank oil storage, oil tank truck transportation and manual tank truck scheduling.

View Article and Find Full Text PDF

Compact high-bandwidth single-beam optically-pumped magnetometer for biomagnetic measurement.

Biomed Opt Express

January 2025

State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China.

Optically-pumped magnetometer (OPM) has been of increasing interest for biomagnetic measurements due to its low cost and portability compared with superconducting quantum interference devices (SQUID). Miniaturized spin-exchange-relaxation-free (SERF) OPMs typically have limited bandwidth (less than a few hundred Hertz), making it difficult to measure high-frequency biomagnetic signals such as the magnetocardiography (MCG) signal of the mouse. Existing experiments mainly use SQUID systems to measure the signal.

View Article and Find Full Text PDF

On-chip spin-exchange relaxation-free (SERF) atomic magnetometers (AMs) require linearly polarized light as detection light whose wavelength is 795 nm. In this study, we propose and demonstrate an inverse-designed linearly polarized light emitter suitable for 795 nm wavelength light. Due to the fact that the electric field of the TE fundamental mode is almost a beam of linearly polarized light, we verified whether the emission light obtained when only coupling efficiency is taken as the objective function is linearly polarized.

View Article and Find Full Text PDF

Continuous-flow phosphate removal using Cry-Ca-COS Monolith: Insights from dynamic adsorption modeling.

Water Res X

May 2025

Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120 Thailand.

This study rigorously evaluates the adsorption performance of the Cry-Ca-COS monolith for phosphate removal in a column operation mode. Characterization of the material both before and after exhaustion in a continuous flow system (column form) showed no difference compared to results from a batch system (tablet form). The XPS results indicated that the adsorption mechanism of phosphate on the Cry-Ca-COS column involved surface microprecipitation and ligand exchange (inner-sphere complexation).

View Article and Find Full Text PDF

Angle-controlled strong and weak coupling in photon molecules.

Sci Rep

January 2025

Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.

Strong light-matter coupling occurs when the rate of energy exchange between the electromagnetic mode and the molecular ensemble exceeds the competitive dissipation process. Coupled photon molecules with near-field light-matter interactions may produce new hybridized states when they reach the strong coupling region. Tunable Terahertz (THz) meta materials can be used to design sensors, optical modulators, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!