A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strong exciton-photon coupling in self-hybridized organic-inorganic lead halide perovskite microcavities. | LitMetric

Controlling coherent light-matter interactions in semiconductor microcavities is at the heart of the next-generation solid-state polaritonic devices. Organic-inorganic hybrid perovskites are potential materials for room-temperature polaritonics owing to their high exciton oscillator strengths and large exciton binding energies. Herein, we report on strong exciton-photon coupling in the micro-platelet and micro-ribbon shaped methylammonium lead bromide single crystals. Owing to high crystallinity and large refractive index, the as-grown perovskite microcrystals serve as self-hybridized optical microcavities along different orientations due to their distinct physical dimensionalities. In this regard, the perovskite micro-platelet forms a simple Fabry-Perot microcavity in out-of-plane orientation, while the micro-ribbon functions as a Fabry-Perot type waveguide microcavity within the plane of the perovskite sample. Consequently, excitons in these microcavities strongly interact with their corresponding uncoupled cavity modes, yielding multimode exciton-polaritons with Rabi splitting energies ∼205 and 235 meV for micro-platelet and micro-ribbon geometry, respectively. Furthermore, micro-ribbon geometry displays Young's double-slit-like interference patterns, which together with the numerical simulation readily reveals the parity and the mode order of the uncoupled cavity modes. Thus, our results not only shed light on strong exciton-photon coupling in various morphologies of methylammonium lead bromide microcrystals but also open an avenue for advanced polaritonic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501772PMC
http://dx.doi.org/10.1515/nanoph-2023-0366DOI Listing

Publication Analysis

Top Keywords

strong exciton-photon
12
exciton-photon coupling
12
polaritonic devices
8
micro-platelet micro-ribbon
8
methylammonium lead
8
lead bromide
8
uncoupled cavity
8
cavity modes
8
micro-ribbon geometry
8
coupling self-hybridized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!