Highly stable pulsed fiber lasers are key optical components in optical communication, optical sensing, and precision micromachining systems due to the high beam quality, high peak power, and compact configurations. However, the available optical modulators in the fiber laser suffer from the operation bandwidth limitations and poor long-term physicochemical stability. Here, we have investigated the broadband nonlinear optical absorption behavior of the chromium iodide (CrI) film, which exhibits broadband saturable absorption towards the mid-infrared regime and excellent long-term stability. The conventional soliton fiber laser operating at telecom wavelength has been obtained from an Er-doped fiber laser (EDFL) utilizing CrI film with a signal-to-noise ratio (SNR) of 92.4 dB and a pulse width of 492 fs. In addition, a passively Q-switched operation around 2.8 μm has also been obtained from an Er-doped ZBLAN fiber laser (EDZFL) modulated by the CrI film with a SNR of 46.8 dB and a pulse width of 766 ns. The demonstration shows that the CrI film exhibits robust broadband optical modulation, and may make inroads for developing highly stable ultrafast optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501328 | PMC |
http://dx.doi.org/10.1515/nanoph-2023-0530 | DOI Listing |
Sensors (Basel)
December 2024
Department of Mechanical Engineering, Stanford University, Stanford, CA 93405, USA.
Distributed feedback lasers, which feature rapid wavelength tunability, are not presently available in the yellow and orange spectral regions, impeding spectroscopic studies of short-lived species that absorb light in this range. To meet this need, a rapidly tunable laser system was constructed, characterized, and demonstrated for measurements of the NH radical at 597.4 nm.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
Hemp fibers, recognized for their breathability, specific strength, and ultraviolet resistance, are widely utilized in textile manufacturing and composite materials. Bio-degumming is a promising alternative technology to traditional chemical degumming that can be used to produce hemp fibers due to its eco-friendly nature. However, its lower efficiency has hindered its widespread adoption.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Materials Engineering Department, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil.
The nanosecond pulsed fibre laser (NsPFL) treatment is extensively employed to distinguish hospital surgical instruments (micro-surgical forceps, surgical blades, orthopaedic drills, and high-precision laparoscopic tools), which are generally composed of stainless steel. Nevertheless, if the laser parameters are not properly optimised, this process may unintentionally provoke corrosion. Maintaining the structural integrity of these materials is essential for ensuring patient safety and minimising long-term costs.
View Article and Find Full Text PDFCureus
December 2024
Department of Dental Sciences, Faculty of Medicine, University of Liege, Liege, BEL.
Background Fracture of nickel-titanium (Ni-Ti) instruments in root canals is commonly associated with compromised outcomes in endodontic treatment. There is no single, universally accepted approach for managing this complication. The objective of this study is to evaluate the effectiveness of an Nd: YAP laser-assisted protocol in removing fractured Ni-Ti files in teeth with minimal root curvature (less than 15 degrees).
View Article and Find Full Text PDFLight Sci Appl
January 2025
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.
Colloidal quantum dots (CQDs) are attractive gain media due to their wavelength-tunability and low optical gain threshold. Consequently, CQD lasers, especially the surface-emitting ones, are promising candidates for display, sensing and communication. However, it remains challenging to achieve a low-threshold surface-emitting CQD laser array with high stability and integration density.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!