The growing interest in transition metal dichalcogenides (TMDs) has encouraged researchers to focus on their nonlinear optical properties, such as harmonic generation (HG), which has potential for fundamental science and applications. HG is a nonlinear phenomenon used to study low-dimensional physics and has applications in bioimaging, optical signal processing, and novel coherent light sources. In this review, we present the state-of-the-art advances of HG in atomically-thin TMDs and their heterostructures. Different factors affecting the HG in TMDs such as strain, electric gating, excitonic resonance, phase and edge modulation, and valley-induced HG are discussed with a particular emphasis on the HG in heterostructure van der Waals TMDs. Moreover, we discuss the enhancement of HG in TMDs by incorporating cavities and nanostructures including the bound states in the continuum with extreme Q-factor. This work provides a concise summary of recent progress in engineering HG in atomically-thin TMDs and their heterostructures and a compact reference for researchers entering the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501143 | PMC |
http://dx.doi.org/10.1515/nanoph-2022-0159 | DOI Listing |
Sci Rep
January 2025
Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.
We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Physics and Materials Science, Changji University, Changji 831100, People's Republic of China.
Finding novel efficient nonlinear optical materials with large second-order nonlinearity for the UV spectral range remains a formidable challenge, especially for silicate systems. Using a high-temperature solid reaction in a tight vacuum environment, two ultraviolet nonlinear optical materials with a moderate second harmonic generation (SHG) response have been created: PbSiOC and PbCaSiO. The SHG values they computed are roughly 2.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.
Microadditive manufacturing has revolutionized the production of complex, nano- to microscale components across various fields. This work investigates two-photon (2P) and three-photon (3P) fluorescence imaging, as well as third-harmonic generation (THG) microscopy, to examine periodic microarchitected lattice structures fabricated using multiphoton lithography (MPL). By immersing the structures in refractive index matching fluids, we demonstrate high-fidelity 3D reconstructions of both fluorescent structures using 2P and 3P microscopy as well as low-fluorescence structures using THG microscopy.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: The human brain is a complex inter-wired system that emerges spontaneous functional fluctuations. In spite of tremendous success in the experimental neuroscience field, a system-level understanding of how brain anatomy supports various neural activities remains elusive.
Method: Capitalizing on the unprecedented amount of neuroimaging data, we present a physics-informed deep model to uncover the coupling mechanism between brain structure and function through the lens of data geometry that is rooted in the widespread wiring topology of connections between distant brain regions.
Inorg Chem
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
Organic-inorganic hybrid lead halides have been extensively studied due to their outstanding physical properties and diverse compositional elements. However, environmentally benign tin-based hybrids with remarkable flexibility in bandgap engineering have been less investigated. Herein, we report the successful design and synthesis of three tin-based organic-inorganic hybrid compounds through precise molecular modification: [Me(i-Pr)N][SnBr] (), [MeCHCl(i-Pr)N][SnBr] (), and [MeCHBr(i-Pr-Br)N][SnBr] ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!