The fabrication of three-dimensional (3D) nanostructures within optical materials is currently a highly sought-after capability. Achieving nanoscale structuring of media within its inner volume in 3D and with free design flexibility, high accuracy and precision is a development yet to be demonstrated. In this work, a 3D laser nanolithography technique is developed which allows producing mm-long hollow nanopores inside solid-state laser crystals and with a high degree of control of pore cross-sectional aspect ratio and size. We report an in-depth study on the formation of pores both within the non-thermal regime at which temperature is fast dissipated after each laser pulse, and for a thermally controlled regime using pulse-bursts which facilitate the formation of pores with highly circular shapes down to 1.1. We demonstrate this process for a wide range of speeds, pulse repetition rates and pulse energies, thus opening the door to a much more useful nanofabrication technique for nanophotonics. Finally, we also report the change in index of refraction that is produced at the nanoscale obtaining a positive index contrast of ∼3%. The work therefore provides a promising path towards reliable 3D nanostructuring of solid-state laser media for the flexible fabrication of large and complex structures with features sizes from the nanoscale up to the mm-scale. Moreover, due to the embedded, seamless, and monolithic nature of this technology, and since YAG crystals can sustain temperatures of up to 1900 °C and are highly chemically inert and erosion resistant, we anticipate its direct application in harsh environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501686 | PMC |
http://dx.doi.org/10.1515/nanoph-2022-0665 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!