Humans are exposed to various environmental chemicals, particles, and pathogens that can cause adverse health outcomes. These exposures are rarely homogenous but rather complex mixtures in which the components may interact, such as through synergism or antagonism. Toxicologists have conducted preliminary investigations into binary mixtures of two components, but little work has been done to understand mixtures of three or more components. We investigated mixtures of divalent metal ions, quantifying the toxic interactions in a human lung model. Eight metals were chosen: heavy metals cadmium, copper, lead, and tin, as well as transition metals iron, manganese, nickel, and zinc. Human alveolar epithelial cells (A549) were exposed to individual metals and sixteen binary and six ternary combinations. The dose-response was modeled using logistic regression in R to extract LC values. Among the individual metals, the highest and lowest toxicity were observed with copper at an LC of 102 μM and lead at an LC of 5639 μM, respectively. First and second-order interaction coefficients were obtained using machine learning-based linear regression in Python. The resulting second-degree polynomial model formed either a hyperbolic or elliptical conic section, and the positive quadrant was used to produce isobolograms and contour plots. The strongest synergism and antagonism were observed in cadmium-copper and iron-zinc, respectively. A three-way interaction term was added to produce full ternary isobologram surfaces, which, to our knowledge, are a significant first in the toxicology literature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615481 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e40481 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Nanchang University, School of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), CHINA.
Introduction of a guest component into the active layer is a simple yet effective approach to enhance the performance of organic solar cells (OSCs). Despite various guest components successfully employed in the OSCs, efficient guest components require deliberate design and ingenious inspiration, which still remains a big challenge for developing high performance OSCs. In this work, we propose a concept of "structural gene" engineering to create a new "double-gene" small molecule (L-DBDD) by simply combining the structures of both donor PM6 and acceptor L8-BO.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
Metal nanocatalysts supported on oxide scaffolds have been widely used in energy storage and conversion reactions. So far, the main research is still focused on the growth, density, size, and activity enhancement of exsolved nanoparticles (NPs). However, the lack of precise regulation of the type and composition of NPs elements under reduction conditions has restricted the architectural development of in situ exsolution systems.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China; State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China. Electronic address:
The power conversion efficiency (PCE) of ternary all-small-molecule organic solar cells (T-ASM-OSCs) differs significantly from that of the polymer systems (2 %), and the role of third component remains unclear. The electron donor of coumarin derivatives with simple structure and strong and broad light absorption has high PCE for T-ASM-OSCs composed of non-fullerene acceptors (Y6 and DBTBT-IC). Here, we calculated the electronic structure and interfacial properties of the binary C1-CN:Y6 and ternary C1-CN:Y6:DBTBT-IC systems using molecular dynamic (MD) simulations and density functional theory (DFT) to explore the role of the third component (DBTBT-IC).
View Article and Find Full Text PDFACS Appl Energy Mater
December 2024
Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne NE1 8QH, United Kingdom.
The chalcogenide perovskite BaZrS has strong visible light absorption and high chemical stability, is nontoxic, and is made from earth-abundant elements. As such, it is a promising candidate material for application in optoelectronic technologies. However, the synthesis of BaZrS thin-films for characterization and device integration remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!