Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Elevated concentrations of manganese (Mn) and zinc (Zn) in water bodies can disrupt ecosystems and damage aquatic life. However, the mechanisms underlying the removal of Mn and Zn under dynamic conditions and the optimal hydraulic retention time (HRT) for passive treatment plants remain unclear. Here, a pilot-scale passive treatment system for the removal of Mn and Zn from legacy mine drainage in northern Japan is proposed; it was performed at circumneutral pH for 152 days. Comprehensive suspended solid mineralogy analyses and geochemical and numerical modelling were conducted to optimise the passive treatment efficiency. Mn removal (efficiency reaching 98 %) primarily depended on the activity of Mn-oxidising bacteria. Zn removal involved Zn co-precipitation with birnessite combined with adsorption or ion exchange on the birnessite surface. The inverse numerical model successfully determined the Mn oxidation rate constant, Zn mass transfer coefficient, and Zn distribution coefficient. Under dynamic conditions, HRT emerged as a key factor underlying the pilot-scale passive treatment efficiency. An HRT of 0.5 days led to optimal Mn and Zn removal conditions and achieved values lower than the Japanese national effluent limit. The findings provide crucial information for passive treatment strategy development and environmental management, especially when considering real-scale implementation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616510 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e40363 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!