Multiport interferometers based on integrated beamsplitter meshes have recently captured interest as a platform for many emerging technologies. In this paper, we present a novel architecture for multiport interferometers based on the sine-cosine fractal decomposition of a unitary matrix. Our architecture is unique in that it is self-similar, enabling the construction of modular multi-chiplet devices. Due to this modularity, our design enjoys improved resilience to hardware imperfections as compared to conventional multiport interferometers. Additionally, the structure of our circuit enables systematic truncation, which is key in reducing the hardware footprint of the chip as well as compute time in training optical neural networks, while maintaining full connectivity. Numerical simulations show that truncation of these meshes gives robust performance even under large fabrication errors. This design is a step forward in the construction of large-scale programmable photonics, removing a major hurdle in scaling up to practical machine learning and quantum computing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501115PMC
http://dx.doi.org/10.1515/nanoph-2022-0525DOI Listing

Publication Analysis

Top Keywords

multiport interferometers
16
sine-cosine fractal
8
architecture multiport
8
interferometers based
8
self-similar sine-cosine
4
fractal architecture
4
multiport
4
interferometers
4
interferometers multiport
4
based integrated
4

Similar Publications

Atom Interferometry with Coherent Enhancement of Bragg Pulse Sequences.

Phys Rev Lett

October 2023

Laboratoire Collisions Agrégats Réactivité, UMR 5589, FERMI, UT3, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France.

We report here on the realization of light-pulse atom interferometers with large-momentum-transfer atom optics based on a sequence of Bragg transitions. We demonstrate momentum splitting up to 200 photon recoils in an ultracold atom interferometer. We highlight a new mechanism of destructive interference of the losses leading to a sizable efficiency enhancement of the beam splitters.

View Article and Find Full Text PDF

Multiport interferometers based on integrated beamsplitter meshes have recently captured interest as a platform for many emerging technologies. In this paper, we present a novel architecture for multiport interferometers based on the sine-cosine fractal decomposition of a unitary matrix. Our architecture is unique in that it is self-similar, enabling the construction of modular multi-chiplet devices.

View Article and Find Full Text PDF

A large number of applications in classical and quantum photonics require the capability of implementing arbitrary linear unitary transformations on a set of optical modes. In a seminal work by Reck et al. [Phys.

View Article and Find Full Text PDF

Optical dosimeter for selective retinal therapy based on multi-port fiber-optic interferometry.

Biomed Opt Express

August 2021

Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Selective retinal therapy (SRT) employs a micro-second short-pulse lasers to induce localized destruction of the targeted retinal structures with a pulse duration and power aimed at minimal damage to other healthy retinal cells. SRT has demonstrated a great promise in the treatment of retinal diseases, but pulse energy thresholds for effective SRT procedures should be determined precisely and in real time, as the thresholds could vary with disease status and patients. In this study, we present the use of a multi-port fiber-based interferometer (MFI) for highly sensitive real-time SRT monitoring.

View Article and Find Full Text PDF

Optical vector network analyzers (OVNAs) based on swept-wavelength interferometry are applied widely in optical metrology and sensing to measure the complex transfer functions of optical components, devices, and fibers. Phase noise from laser sweep nonlinearities degrades the measurement quality as the distance increases and limits the usage of the OVNA in characterizing systems with long impulse responses as required in space-division multiplexing links with a high mode count or in the presence of large modal differential group delay (DGD). In this Letter, we use a densely distributed broadband ultra-weak fiber Bragg grating array to directly measure the distortion due to phase noise at a 5-m increment up to 400 m and use this measured data to directly eliminate the distortion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!