Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501837 | PMC |
http://dx.doi.org/10.1515/nanoph-2022-0734 | DOI Listing |
Sensors (Basel)
January 2025
Yunnan Earthquake Agency, Kunming 650224, China.
The strong motion records collected in full-scale structures provide the ultimate evidence of how real structures, in situ, respond to earthquakes. This paper presents a novel method for visualization, in three dimensions (3D), of the collective motion by a dense array of sensors in a building. The method is based on one- and two-dimensional biharmonic spline interpolation of the motion recorded by multiple sensors on the same or multiple floors.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.
Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.
View Article and Find Full Text PDFMicroorganisms
January 2025
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City 04510, Mexico.
The primary mode of transmission for Chagas disease is vector-borne transmission, spread by hematophagous insects of the subfamily. In Mexico, the triatomine is particularly significant in the transmission of . This study focused on analyzing protein expression and modifications by glycosylation in different regions of the digestive tract of fifth-instar nymphs of .
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo 181-8611, Japan.
High-frequency ultrasound (HFUS) has been reported to be useful for the diagnosis of cutaneous diseases; however, its two-dimensional nature limits the value both in quantitative and qualitative evaluation. Three-dimensional (3D) visualization might help overcome the weakness of the currently existing HFUS. 3D-HFUS was newly developed and applied to various skin tumors and inflammatory hair diseases to assess its validity and advantages for dermatological use.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China.
Actinide elements are characterized by their unique electronic correlations, variable valence states, and localized 5f electrons, leading to unconventional electronic and topological properties in their compounds. The distinctive physical properties of actinide materials are maintained in low-dimensional forms, yet two-dimensional (2D) actinide materials remain largely unexplored due to their scarcity and the experimental challenges posed by their radioactivity. To fill the knowledge gap in 2D actinide materials, we theoretically designed a series of stable thorium-containing 2D materials, including MXenes, chalcogenides, halides, and other compounds with unique structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!