In this paper, we combine a Content-Addressable Memory (CAM) encoding scheme previously proposed for analog electronic CAMs (E-CAMs) with optical multiplexing techniques to create two new photonic CAM architectures-wavelength-division multiplexing (WDM) optical ternary CAM (O-TCAM) and time-division multiplexing (TDM) O-TCAM. As an example, we show how these two O-TCAM schemes can be implemented by performing minor modifications in microring-based silicon photonic (SiPh) circuits originally optimized for exascale interconnects. Here, our SiPh O-TCAM designs include not only the actual search engine, but also the transmitter circuits. For the first time, we experimentally demonstrate O-TCAM functionality in SiPh up to and we prove in simulation feasibility for speeds up to 10 Gbps, 10 times faster than typical E-TCAMs at the expense of higher energy consumption per symbol of our O-TCAM Search Engine circuits than the corresponding E-TCAMs. Finally, we identify which hardware and architecture modifications are required to improve the O-CAM's energy efficiency towards the level of E-CAMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501976PMC
http://dx.doi.org/10.1515/nanoph-2023-0406DOI Listing

Publication Analysis

Top Keywords

optical ternary
8
content-addressable memory
8
search engine
8
o-tcam
6
multiplexing
4
multiplexing photonics
4
photonics resource
4
resource optical
4
ternary content-addressable
4
memory functionality
4

Similar Publications

The development of efficient and sustainable photocatalysts for wastewater treatment remains a critical challenge in environmental remediation. In this study, a ternary photocatalyst, Cu-CuO/g-CN, was synthesized by embedding copper-copper oxide heterostructural nanocrystals onto g-CN nanosheets via a simple deposition method. Structural and optical characterization confirmed the successful formation of the heterostructure, which combines the narrow bandgap of CuO, the high stability of g-CN, and the surface plasmon resonance (SPR) effect of Cu nanoparticles.

View Article and Find Full Text PDF

High-performance ternary logic circuits and neural networks based on carbon nanotube source-gating transistors.

Sci Adv

January 2025

Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China.

Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs).

View Article and Find Full Text PDF

A butterfly-shaped acceptor with rigid skeleton and unique assembly enables both efficient organic photovoltaics and high-speed organic photodetectors.

Natl Sci Rev

January 2025

State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China.

It remains challenging to design efficient bifunctional semiconductor materials in organic photovoltaic and photodetector devices. Here, we report a butterfly-shaped molecule, named WD-6, which exhibits low energy disorder and small reorganization energy due to its enhanced molecular rigidity and unique assembly with strong intermolecular interaction. The binary photovoltaic device based on PM6:WD-6 achieved an efficiency of 18.

View Article and Find Full Text PDF

A theoretical comparison of different third component content in ternary organic solar cells.

Phys Chem Chem Phys

January 2025

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.

Article Synopsis
  • Ternary solar cells are being developed to enhance the efficiency of organic solar cells by adding a third component, though the relationship between morphology and power conversion efficiency (PCE) is not fully understood.
  • Researchers constructed two ternary active layers with different Y7 component contents and investigated how these variations affect PCE through theoretical calculations.
  • The study reveals that increasing Y7 content shifts the stacking patterns in the active layer, influencing charge separation and enhancing PCE, while also laying groundwork for future experiments involving non-fullerene materials.
View Article and Find Full Text PDF

The role of third component in coumarin-based all-small-molecule ternary organic solar cells with non-fullerene acceptor based on molecular stacking.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China; State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China. Electronic address:

The power conversion efficiency (PCE) of ternary all-small-molecule organic solar cells (T-ASM-OSCs) differs significantly from that of the polymer systems (2 %), and the role of third component remains unclear. The electron donor of coumarin derivatives with simple structure and strong and broad light absorption has high PCE for T-ASM-OSCs composed of non-fullerene acceptors (Y6 and DBTBT-IC). Here, we calculated the electronic structure and interfacial properties of the binary C1-CN:Y6 and ternary C1-CN:Y6:DBTBT-IC systems using molecular dynamic (MD) simulations and density functional theory (DFT) to explore the role of the third component (DBTBT-IC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!