The popularity of Unmanned Aerial Vehicles (UAVs) in agriculture makes data collection more affordable, facilitating the development of solutions to improve agricultural quality. We present a dataset of rice seedlings extracted from aerial images captured by a UAV under various environmental conditions. We focus on rice seedlings cultivated by the sowing method during their early growth stages because these stages are important to the establishment and survival as well as foundation for lifelong growth. We employed an adaptive thresholding method to isolate rice seedlings from the aerial images. We subsequently classified them into three categories based on their germination conditions: single rice seedings, clustered rice seed plants, and undefined objects. We obtained a total of 5364 labeled images of rice seedlings through data augmentation. This dataset serves as a resource for assessing germination rates and density using machine learning methods. The results derived from these assessments help farmers understand seedling growth and enable them to monitor the health and vigor of rice seedling during early growth stages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615883PMC
http://dx.doi.org/10.1016/j.dib.2024.111118DOI Listing

Publication Analysis

Top Keywords

rice seedlings
20
rice
8
dataset rice
8
assessing germination
8
germination rates
8
rates density
8
aerial images
8
early growth
8
growth stages
8
seedlings
5

Similar Publications

Background And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.

Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.

View Article and Find Full Text PDF

To explore the internal factors related to the strong growth and competitive ability of weedy rice during the seedling period, we collected two biotypes of Japonica weedy rice from Northeast China, four biotypes of Indica weedy rice from Eastern China and Southern China, and two biotypes of cultivated rice, Zhendao-8 (ZD-8) and Shanyou-63 (SY-63), which were used as controls in a pot experiment. Under homogeneous garden planting conditions, we measured the vascular bundle size (VBS), vascular bundle number (VBN), leaf thickness (LT), air cavity size (ACS), stomatal size (SS), stomatal density (SD), net photosynthetic rate (Pn) and stomatal conductance (Gs) of the weedy and cultivated rice biotypes. A comprehensive analysis was performed to explore the correlation between the seedling leaf structure and the photosynthetic indices of the biotypes.

View Article and Find Full Text PDF

CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.

View Article and Find Full Text PDF

A small peptide miPEP172b encoded by primary transcript of miR172b regulates salt tolerance in rice.

Plant Physiol Biochem

December 2024

Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Fujian Agriculture and Forestry University, Fuzhou, China. Electronic address:

Recent studies have demonstrated that the primary transcript of miRNAs (pri-miRNAs) are able to encode small peptides influencing plant growth and development, as well as responses to various environmental cues. However, their role in plant responses to salt stress is not fully comprehended. Here, we characterized a short peptide encoded by miR172b (miPEP172b) in rice (Oryza sativa L.

View Article and Find Full Text PDF

Rice is considered to be moderately salt-tolerant during germination, development, and ripening stages, and environmentally sensitive during seedling and reproductive stages, which affects seedling emergence and growth, resulting in significant yield losses. Seed conditioning with chitosan has been employed as a useful tool in high-salinity environments with the aim of increasing crop productivity and quality, as well as promoting more sustainable agricultural practices. Therefore, this study aimed to examine the effect of seed conditioning with chitosan on seed germination and rice seedling growth under salinity stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!