Dual-band composite right/left-handed metamaterial lines with dynamically controllable nonreciprocal phase shift proportional to operating frequency.

Nanophotonics

Electrical Engineering and Electronics Department, Kyoto Institute of Technology, 1 Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.

Published: April 2022

Dual-band composite right/left-handed transmission lines with the nonreciprocal phase shift approximately proportional to the operating frequency are proposed and demonstrated by using normally magnetized ferrite microstrip lines. The nonreciprocal phase shift can be dynamically controlled by changing the externally applied dc magnetic field. Dynamic change in the nonreciprocal phase gradient along the line enables us to realize dual-band and unidirectional beam-scanning leaky-wave antennas without suffering from frequency-dependent change in the beam direction. A prototype nonreciprocal metamaterial line using polycrystalline yttrium iron garnet was fabricated and measured for verification of our basic concept.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502083PMC
http://dx.doi.org/10.1515/nanoph-2021-0783DOI Listing

Publication Analysis

Top Keywords

nonreciprocal phase
16
phase shift
12
dual-band composite
8
composite right/left-handed
8
shift proportional
8
proportional operating
8
operating frequency
8
lines nonreciprocal
8
nonreciprocal
5
right/left-handed metamaterial
4

Similar Publications

We study Hopfield networks with non-reciprocal coupling inducing switches between memory patterns. Dynamical phase transitions occur between phases of no memory retrieval, retrieval of multiple point-attractors, and limit-cycle attractors. The limit cycle phase is bounded by two critical regions: a Hopf bifurcation line and a fold bifurcation line, each with unique dynamical critical exponents and sensitivity to perturbations.

View Article and Find Full Text PDF

In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.

View Article and Find Full Text PDF

Time-reversal symmetry breaking of a topological insulator phase generates zero-field edge modes which are the hallmark of the quantum anomalous Hall effect (QAHE) and of possible value for dissipation-free switching or non-reciprocal microwave devices. But present material systems exhibiting the QAHE, such as magnetically doped bismuth telluride and twisted bilayer graphene, are intrinsically unstable, limiting their scalability. A pristine magnetic oxide at the surface of a TI would leave the TI structure intact and stabilize the TI surface, but epitaxy of an oxide on the lower-melting-point chalcogenide presents a particular challenge.

View Article and Find Full Text PDF

Mapping spatial patterns to energetic benefits in groups of flow-coupled swimmers.

Elife

December 2024

Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, United States.

The coordinated motion of animal groups through fluids is thought to reduce the cost of locomotion to individuals in the group. However, the connection between the spatial patterns observed in collectively moving animals and the energetic benefits at each position within the group remains unclear. To address this knowledge gap, we study the spontaneous emergence of cohesive formations in groups of fish, modeled as flapping foils, all heading in the same direction.

View Article and Find Full Text PDF

Pattern dynamics of the nonreciprocal Swift-Hohenberg model.

Phys Rev E

November 2024

Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.

We investigate the pattern dynamics of the one-dimensional nonreciprocal Swift-Hohenberg model. Characteristic spatiotemporal patterns such as disordered, aligned, swap, chiral-swap, and chiral phases emerge depending on the parameters. We classify the characteristic spatiotemporal patterns obtained in numerical simulation by focusing on the spatiotemporal Fourier spectrum of the order parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!