Deep-subwavelength multilayered meta-coatings for visible-infrared compatible camouflage.

Nanophotonics

Department of Materials Science & Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai 200433, China.

Published: May 2024

Camouflage is a common technique in nature, enabling organisms to protect themselves from predators. The development of novel camouflage technologies, not only in fundamental science, but also in the fields of military and civilian applications, is of great significance. In this study, we propose a new type of deep-subwavelength four-layered meta-coating consisting of Si, Bi, Si, and Cr from top to bottom with total thickness of only ∼355 nm for visible-infrared compatible camouflage. The visible color and the infrared emission properties of the meta-coating can be independently adjusted. Colorful meta-coating for visible camouflage can be obtained by changing the thickness of top Si layer, while the selective high emissivity in non-atmospheric window for infrared camouflage remains. Due to the deep-subwavelength properties, the meta-coating shows high angle tolerance in both visible and infrared regions. The compatible camouflage capability of our proposed meta-coating in the visible-infrared region is validated under different environments. The deep-subwavelength, angular insensitivity, visible-infrared compatibility and large-area fabrication feasibility promise the meta-coating an effective solution for camouflage in various applications such as military weapons and anti-counterfeiting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501840PMC
http://dx.doi.org/10.1515/nanoph-2024-0029DOI Listing

Publication Analysis

Top Keywords

compatible camouflage
12
visible-infrared compatible
8
camouflage
8
properties meta-coating
8
meta-coating
6
deep-subwavelength
4
deep-subwavelength multilayered
4
multilayered meta-coatings
4
visible-infrared
4
meta-coatings visible-infrared
4

Similar Publications

Multispectral camouflage materials that provide adaptable features across a wide spectrum, from visible light to radar frequencies, play a vital role in sophisticated multi-band electromagnetic (EM) applications. However, conventional single-band stealth is difficult to align with the growing demand for multi-band compatibility and intelligent adaptation. Herein, we report the design and synthesis of cephalopod-inspired MXene-integrated cholesteric liquid crystal elastomers (MXene-CLCEs) with multispectral camouflage capability, which was fabricated through in situ thiol-acrylate Michael addition and free-radical photopolymerization of CLCE precursor and isocyanate-mediated robust covalent chemical bonding of MXene nanocoating at the interface.

View Article and Find Full Text PDF

Modern detection technology has driven camouflage technology toward multispectral compatibility and dynamic regulation. However, developing such stealth technologies is challenging due to different frequency-band principles. Here, this work proposes a design concept for a fluid-actuated multispectral compatible smart stealth device that employs a deformable mechanochromic layer/elastomer with a channeled dielectric layer.

View Article and Find Full Text PDF

Optical-electromagnetic compatible devices are urgently required in intelligent building monitors and cross-band protection. Meanwhile, the insufficient systematicness and semi-empirical attempts significantly limit the prosperity of cross-band materials, causing enormous challenges for deviceization and material database construction. Herein, the systematical component-deviceization-machine learning prediction-array construction strategy is attempted to solve the bottleneck issues.

View Article and Find Full Text PDF

Metasurface with all-optical tunability for spatially-resolved and multilevel thermal radiation.

Nanophotonics

April 2024

Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Manipulating the thermal emission in the infrared (IR) range significantly impacts both fundamental scientific research and various technological applications, including IR thermal camouflage, information encryption, and radiative cooling. While prior research has put forth numerous materials and structures for these objectives, the significant challenge lies in attaining spatially resolved and dynamically multilevel control over their thermal emissions. In this study, a one-step ultrafast laser writing technique is experimentally demonstrated to achieve position-selective control over thermal emission based on the phase-change material GeSbTe (GST).

View Article and Find Full Text PDF

Multispectral compatible camouflage has attracted widespread attention due to the rapid development of various detection technologies. This work presents a multifunctional metasurface that is compatible with laser stealth, infrared shielding, and the thermal management function. To achieve laser stealth, the metasurface is designed as a metal-insulator-metal (MIM) structure for high absorption of laser lights at 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!