A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxidative stress and apoptosis of the spinal cord in a rat model of retinoic acid-induced neural tube defects. | LitMetric

AI Article Synopsis

  • Neural tube defects (NTDs) are serious developmental issues affecting the central nervous system, resulting from the neural tube not closing properly during early pregnancy.
  • In a study involving 168 embryos from pregnant rats exposed to all-trans retinoic acid (atRA), 78% exhibited NTDs, leading to noticeable spinal deformities and significant growth issues compared to control groups.
  • The research highlighted increased oxidative stress and apoptosis in the NTD-affected group, with the potential for targeting specific genes or proteins for future therapies aimed at reducing these harmful effects.

Article Abstract

Neural tube defects (NTDs) are severe congenital anomalies that significantly impact the central nervous system, arising from the neural tube's failure to close during early embryogenesis. In this study, we investigated NTDs and associated pathophysiological mechanisms in foetal rats following exposure to all-trans retinoic acid (atRA). Out of 168 embryos from 15 pregnant rats in the experimental group, 78% displayed NTDs with notable spinal deformities, primarily in the lumbar-sacral region, similar to human cases. Body weight and crown-rump length (CRL) measurements indicated significant growth impairment in the NTD group compared to controls, while the atRA-treated group without NTDs showed no notable differences in growth. Immunohistochemistry (IHC) results demonstrated decreased NeuN and PCNA expression in the NTD group's spinal cord. Oxidative stress markers showed markedly reduced superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) activity, alongside increased malondialdehyde (MDA) levels in the NTD group, indicating heightened oxidative stress. Analysis of apoptosis-related proteins revealed elevated Bax and caspase-3 levels, reduced Bcl-2 and lower poly (ADP-ribose) polymerase (PARP) in the NTD group, suggesting a pronounced shift towards proapoptotic pathways, potentially contributing to NTD progression. Our findings indicate that oxidative stress and apoptosis play significant roles in the development of NTDs. Future investigations should aim to pinpoint critical regulatory genes or proteins that might be targeted for therapeutic interventions to alleviate oxidative stress and apoptosis in NTD development.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jdn.10399DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
stress apoptosis
12
ntd group
12
spinal cord
8
neural tube
8
tube defects
8
ntds notable
8
ntd
6
oxidative
5
ntds
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!