AI Article Synopsis

  • Posaconazole (PCZ) is a broad-spectrum antifungal that we studied using a combination of fractional factorial design and machine learning to create a quick and sensitive method for measuring it in low-volume plasma samples.
  • The optimized conditions led to a PCZ retention time of around 8.2 minutes, with over 98% recovery during extraction and a limit of quantification of 50 ng/mL across a linear range of 50-2000 ng/mL.
  • This validated method was successfully applied in pharmacokinetic studies on rats, providing important metrics such as a half-life of 7.1 hours and a mean residence time of 10.5 hours.

Article Abstract

Posaconazole (PCZ) is a triazole antifungal agent with a broad-spectrum activity. Our research aims to present a novel approach by combining a 2-level fractional factorial design and machine learning to optimize both chromatography and extraction experiments, allowing for the development of a rapid method with a low limit of quantification (LOQ) in low-volume plasma samples. The PCZ retention time at the optimized condition (organic phase 58%, methanol 6%, mobile pH = 7, column temperature: 39 °C, and flow rate of 1.2 mL/min) was found to be 8.2 ± 0.2 min, and the recovery of the PCZ at the optimized extraction condition (500 µL extraction solvent, NaCl 10% w/v, plasma pH = 11, extraction time = 10 min, and centrifuge time = 1 min) was calculated above 98%. The results of machine learning models were in line with the results of experimental design. Method validation was performed according to ICH guideline. The method was linear in the range of 50-2000 ng/mL and LOQ was found to be 50 ng/mL. Additionally, the validated method was applied to analyze PCZ nanomicelles and conduct pharmacokinetic studies on rats. Half-life (t), mean residence time (MRT), and the area under the drug concentration-time curve (AUC) were found to be 7.1 ± 0.6 h, 10.5 ± 0.9 h, and 1725.7 ± 44.1 ng × h/mL, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619427PMC
http://dx.doi.org/10.1186/s13065-024-01349-2DOI Listing

Publication Analysis

Top Keywords

machine learning
12
low-volume plasma
8
plasma samples
8
learning models
8
method
5
development hplc-uv
4
hplc-uv method
4
method quantification
4
quantification posaconazole
4
posaconazole low-volume
4

Similar Publications

Machine learning (ML) is a powerful tool for the automated data analysis of molecular dynamics (MD) simulations. Recent studies showed that ML models can be used to identify protein-ligand unbinding pathways and understand the underlying mechanism. To expedite the examination of MD simulations, we constructed PathInHydro, a set of supervised ML models capable of automatically assigning unbinding pathways for the dissociation of gas molecules from [NiFe] hydrogenases, using the unbinding trajectories of CO and H from [NiFe] hydrogenase as a training set.

View Article and Find Full Text PDF

The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.

View Article and Find Full Text PDF

Incidence of fall-from-height injuries and predictive factors for severity.

J Osteopath Med

January 2025

McAllen Department of Trauma, South Texas Health System, McAllen, TX, USA.

Context: The injuries caused by falls-from-height (FFH) are a significant public health concern. FFH is one of the most common causes of polytrauma. The injuries persist to be significant adverse events and a challenge regarding injury severity assessment to identify patients at high risk upon admission.

View Article and Find Full Text PDF

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

Liquid-Metal-Based Multichannel Strain Sensor for Sign Language Gesture Classification Using Machine Learning.

ACS Appl Mater Interfaces

January 2025

Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.

Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!