Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ubiquitination regulates a myriad of eukaryotic signaling cascades by modifying substrate proteins, thereby determining their functions and fates. In this perspective, we discuss current challenges in investigating the ubiquitin system in the developing brain. We foster the concept that ubiquitination pathways are spatiotemporally regulated and tightly intertwined with molecular and cellular transitions during neurogenesis and neural circuit assembly. Focusing on the neurologically highly relevant class of homologous to E6AP C-terminus (HECT) ubiquitin ligases, we propose cross-disciplinary translational approaches bridging state-of-the-art cell biology, proteomics, biochemistry, structural biology and neuroscience to dissect ubiquitination in neurodevelopment and its specific perturbations in brain diseases. We highlight that a comprehensive understanding of ubiquitin signaling in the brain may reveal new horizons in basic neuroscience and clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41594-024-01422-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!