A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding ubiquitination in neurodevelopment by integrating insights across space and time. | LitMetric

Understanding ubiquitination in neurodevelopment by integrating insights across space and time.

Nat Struct Mol Biol

Max Planck Institute for Multidisciplinary Sciences, Research Group 'Ubiquitin Signaling Specificity', Am Fassberg 11, Göttingen, Germany.

Published: December 2024

AI Article Synopsis

  • - Ubiquitination plays a crucial role in regulating various signaling pathways in eukaryotic cells by modifying proteins, which affects their functions and life cycles.
  • - The review addresses the challenges of studying the ubiquitin system in the developing brain, emphasizing the complex and time-sensitive nature of these pathways during brain development and neural circuit formation.
  • - The authors suggest using interdisciplinary methods, including cell biology and neuroscience, to better understand how ubiquitination affects neurodevelopment and is linked to brain diseases, which could lead to new insights in neuroscience and potential clinical applications.

Article Abstract

Ubiquitination regulates a myriad of eukaryotic signaling cascades by modifying substrate proteins, thereby determining their functions and fates. In this perspective, we discuss current challenges in investigating the ubiquitin system in the developing brain. We foster the concept that ubiquitination pathways are spatiotemporally regulated and tightly intertwined with molecular and cellular transitions during neurogenesis and neural circuit assembly. Focusing on the neurologically highly relevant class of homologous to E6AP C-terminus (HECT) ubiquitin ligases, we propose cross-disciplinary translational approaches bridging state-of-the-art cell biology, proteomics, biochemistry, structural biology and neuroscience to dissect ubiquitination in neurodevelopment and its specific perturbations in brain diseases. We highlight that a comprehensive understanding of ubiquitin signaling in the brain may reveal new horizons in basic neuroscience and clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-024-01422-3DOI Listing

Publication Analysis

Top Keywords

ubiquitination neurodevelopment
8
understanding ubiquitination
4
neurodevelopment integrating
4
integrating insights
4
insights space
4
space time
4
time ubiquitination
4
ubiquitination regulates
4
regulates myriad
4
myriad eukaryotic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!