AI Article Synopsis

  • Excessive fertilisation and poor nutrient management in subtropical plateau regions, particularly Yunnan Province, China, contribute to significant environmental risks in agriculture.
  • A case study from 2002 to 2021 revealed high greenhouse gas emissions and environmental footprints from crop production, largely due to agricultural inputs like fertilizers and pesticides.
  • Optimizing nutrient management can substantially reduce emissions and environmental impacts, suggesting that improved agricultural practices are crucial for sustainable development.

Article Abstract

Excessive fertilisation, improper nutrient management, and specific climatic factors are the main reasons for the high environmental risks associated with agricultural production in subtropical plateau regions. However, quantitative data of environmental impacts and emission reduction potential remain unclear. The development potential of such systems is likely to be significant. In that context, we conducted a case study in Yunnan Province, China, to quantify the environmental impact of crop production from 2002 to 2021. A life cycle assessment method was employed to identify the factors driving environmental impacts, and potential mitigation strategies were proposed. The yield and total nutrient input of grain crops in Yunnan Province increased over the 20-year period, and the environmental footprint of crop production in Yunnan Province was higher than that in other regions. The average annual mean greenhouse gas (GHG) emissions, soil acidification potential (AP), and water eutrophication potential (EP) of crop production from 2002 to 2021 were 837 kg CO-eq·Mg, 15.7 kg SO-eq·Mg, and 2.71 kg PO-eq Mg, respectively. Environmental emissions from crops mainly originate from the application of agricultural inputs (including fertilisers (N, P, and K), pesticides, seed, diesel fuels, and plastic film) during the crop life cycle. There was a significant correlation between surplus nitrogen and environmental impacts. Scenario testing showed that optimised nutrient management practices could increase crop yield and reduce environmental costs. GHG emissions, AP, and EP from the production of rice, wheat, and maize are expected to decrease by 43.0-59.5%, 51.5-64.5%, and 57.4-71.5%, respectively (scenario 4, S4). Based on these findings, we propose that com-prehensive agricultural management measures can reduce the negative impacts of crop production on the environment in subtropical plateau areas and help achieve sustainable agricultural development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618347PMC
http://dx.doi.org/10.1038/s41598-024-80808-1DOI Listing

Publication Analysis

Top Keywords

crop production
20
subtropical plateau
12
environmental impacts
12
yunnan province
12
impacts crop
8
plateau regions
8
case study
8
study yunnan
8
nutrient management
8
environmental
8

Similar Publications

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Dufulin Impacts Plant Defense Against Tomato Yellow Leaf Curl Virus Infecting Tomato.

Viruses

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.

(TYLCV) poses a significant threat to tomato production, leading to severe yield losses. The current control strategies primarily rely on the use of pesticides, which are often nonselective and costly. Therefore, there is an urgent need to identify more environmentally friendly alternatives.

View Article and Find Full Text PDF

Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.

View Article and Find Full Text PDF

Stinging nettle () is an herbaceous perennial plant native to Eurasia, wildly distributed throughout the temperate parts of the world. Although generally considered as a weed due to its fast growth and invasive capacity, stinging nettle is well suited to cultivation and is currently experiencing a revival as a beneficial crop due to its numerous potential applications. This interest reflects in an increasing number of scientific articles related to nettle in the last years.

View Article and Find Full Text PDF

The mung bean ( (Linn) Wilczek.) is a major grain crop in China, but its yield is significantly impacted by weeds. However, no pre-emergence herbicides are registered for mung bean fields in the China Pesticide Information Network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!