The Internet of Things (IoT) consist of a network of interconnected nodes constantly communicating, exchanging, and transferring data over various network protocols. Intrusion detection systems using deep learning are a common method used for providing security in IoT. However, traditional deep learning IDS systems do not accurately classify the attack and also require high computation time. Thus, to solve this issue, herein, we propose an advance Intrusion detection framework using Self-Attention Progressive Generative Adversarial Network (SAPGAN) framework for detecting security threats in IoT networks. In our proposed framework, at first, the IoT data are gathered. Then, the data are fed to pre-processing. In pre-processing, it restored the missing value using Local least squares. Then the preprocessing output is fed to feature selection. At feature selection, the optimum features are compiled using a modified War Strategy Optimization Algorithm (WSOA). Based upon the optimum features, the intruders were categorized into two categories named Anomaly and Normal using the proposed framework. Numerous attacks are assembled, including camera-based flood, DDoS, RTSP brute force, etc. We have compared our proposed framework using state of the art model and efficiency of 23.19%, 27.55%, and 18.35% higher accuracy and 14.46%, 26.76%, and 13.65% lower computational time compared to traditional models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618594 | PMC |
http://dx.doi.org/10.1038/s41598-024-81535-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!