Herein, we describe a reliable and efficient approach for the first chemical synthesis of biologically significant and complex 3--(-3-hydroxydecanoyl) modified uridine diphosphate -acetylglucosamine that is the native substrate of LpxC involved in the biosynthesis of the cell wall of . The synthetic protocol provides a successful example for the reliable preparation of modified nucleoside diphosphate sugar, which features judiciously selected protecting groups, the formation of pyrophosphate linkage with 5'-phosphate nucleoside as nucleophile, and the straightforward purification process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c04042DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667732PMC

Publication Analysis

Top Keywords

chemical synthesis
8
native substrate
8
substrate lpxc
8
reliable chemical
4
synthesis udp-3--[-3-hydroxydecanoyl]-glcnac
4
udp-3--[-3-hydroxydecanoyl]-glcnac native
4
lpxc describe
4
describe reliable
4
reliable efficient
4
efficient approach
4

Similar Publications

Precise Synthesis of 4.75 V-Tolerant LiCoO with Homogeneous Delithiation and Reduced Internal Strain.

J Am Chem Soc

January 2025

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

The rapid advancements in 3C electronic devices necessitate an increase in the charge cutoff voltage of LiCoO to unlock a higher energy density that surpasses the currently available levels. However, the structural devastation and electrochemical decay of LiCoO are significantly exacerbated, particularly at ≥4.5 V, due to the stress concentration caused by more severe lattice expansion and shrinkage, coupled with heterogeneous Li intercalation/deintercalation reactions.

View Article and Find Full Text PDF

Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.

View Article and Find Full Text PDF

The chemical flexibility of the tetragonal tungsten bronze (TTB) structure offers a large potential for compositional engineering. Cation size and vacancy concentration are known to affect its structure, cation disorder, and functional properties. However, the compositional complexity also makes the TTB structure challenging to understand.

View Article and Find Full Text PDF

Zero-Crosstalk Tumor-Targeting Ratiometric Near-Infrared γ-Glutamyltranspeptidase Probe for Fluorescent-Guided Surgical Resection of Orthotopic Hepatic Tumor.

Anal Chem

January 2025

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, P.R. China.

The challenge of "false positive" signals significantly complicates tumor localization and surgical resection, which are pivotal for successful tumor surgeries. Therefore, the development of a method for preoperative tumor localization and intraoperative margin determination holds considerable promise for improving surgical outcomes. In this study, a zero-crosstalk ratiometric tumor-targeting near-infrared (NIR) fluorescent probe was developed for precise cancer diagnosis and intraoperative navigation via NIR fluorescence imaging.

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!