Mutations in the E3 ubiquitin ligase parkin cause a familial form of Parkinson's disease. Parkin and the mitochondrial kinase PTEN-induced kinase 1 assure quality control of mitochondria through selective autophagy of mitochondria (mitophagy). Whereas numerous parkin mutations have been functionally and structurally characterized, several Parkinson's disease mutations found in the catalytic Rcat domain of parkin remain poorly understood. Here, we characterize two pathogenic Rcat mutants, T415N and P437L. We demonstrate that both mutants exhibit impaired activity using autoubiquitination and ubiquitin vinyl sulfone assays. We determine the minimal ubiquitin-binding segment and show that both mutants display impaired binding of ubiquitin charged on the E2 enzyme. Finally, we use AlphaFold 3 to predict a model of the phospho-parkin:phospho-ubiquitin:ubiquitin-charged E2 complex. The model shows the repressor element of parkin and the N-terminal residues of the catalytic domain form a helix to position ubiquitin for transfer from the E2 to parkin. Our results rationalize the pathogenicity of the parkin mutations and deepen our understanding of the active parkin:E2∼Ub complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbc.2024.108051 | DOI Listing |
Int J Biol Sci
January 2025
Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120.
The close interaction of mitochondrial fission and mitophagy, two crucial mechanisms, is key in the progression of myocardial ischemia-reperfusion (IR) injury. However, the upstream regulatory mechanisms governing these processes remain poorly understood. Here, we demonstrate a marked elevation in Nr4a1 expression following myocardial IR injury, which is associated with impaired cardiac function, heightened cardiomyocyte apoptosis, exacerbated inflammatory responses, and endothelial dysfunction.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
Chemoresistance is an important factor in multiple myeloma (MM) relapse and overall survival. However, the mechanism underlying resistance remains unclear. In this study, we identified adenine nucleotide translocase 3 (ANT3) as a novel biomarker and therapeutic target for MM progression and resistance to the proteasome inhibitor bortezomib (BTZ).
View Article and Find Full Text PDFInflammation
December 2024
Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
Microglia, the central nervous system's primary immune cells, play a key role in the progression of cerebral ischemic stroke, particularly through their involvement in pyroptosis. The long non-coding RNA taurine up-regulated gene 1 (Tug1) is elevated during ischemic stroke and is critical in driving post-stroke neuroinflammation. However, the underlying molecular mechanisms remain unclear.
View Article and Find Full Text PDFBiol Trace Elem Res
December 2024
Department of Animal Science, North Carolina State University, Plants for Human Health Institute, NC Research Campus, Kannapolis, NC, USA.
Atmospheric particulate matter (PM) is one of the most dangerous air pollutants of anthropogenic origin; it consists of a heterogeneous mixture of inorganic and organic components, including transition metals and polycyclic aromatic hydrocarbons. Although previous studies have focused on the effects of exposure to highly concentrated PM on the respiratory and cardiovascular systems, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) tract by linking exposure to external stressors with conditions such as appendicitis, colorectal cancer, and inflammatory bowel disease. In general, it has been hypothesized that the main mechanism involved in PM toxicity consists of an inflammatory response and this has also been suggested for the GI tract.
View Article and Find Full Text PDFSci Rep
December 2024
National Physical Laboratory, Teddington, UK.
We present the first controlled-environment measurements of the optical path-length change response of telecommunication submarine cables to active seismic and acoustic waves. We perform the comparison among integrated (optical interferometry) and distributed (distributed acoustic sensing, DAS) fibre measurements and ground truth data acquired by 58 geophones, 20 three-axis seismometers and 7 microphones. The comparison between different seismic acquisition methods is an essential step towards full validation and calibration of the data acquired using novel cable-based sensing techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!