Nanotechnology advancements have facilitated the development of eco-friendly strategies to combat bacterial infections caused by antibiotic-resistant pathogens. This study promotes a green method for the synthesis of silver nanoparticles (AgNPs) utilizing Eucalyptus globulus leaf extracts as an alternative to traditional colloidal AgNPs obtained through chemical synthesis, investigating their antibacterial efficacy against Pseudomonas aeruginosa and their impact on the expression of bacterial virulence factors (pyocyanin, pyoverdine, rhamnolipids). This work demonstrates that: i. while colloidal AgNPs showed ineffective up to 120 μM, green AgNPs had a bactericidal effect already at 20 μM, without impacting bacterial virulence factors at sub-inhibitory concentrations; ii. the polyphenolic shell surrounding green AgNPs could play a crucial role in the antibacterial mechanisms, with a pro-oxidant action confirmed by a greater sensitivity to hydrogen peroxide (HO); iii. AgNPs improved the antibacterial properties of chitosan when incorporated into thin films. Consequently, an environmentally friendly nanocomposite film with antibacterial and antibiofilm properties was produced, which holds promise for application in food packaging to mitigate the emergence of microbial contamination in food products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138277DOI Listing

Publication Analysis

Top Keywords

green agnps
12
antibacterial efficacy
8
efficacy pseudomonas
8
pseudomonas aeruginosa
8
thin films
8
colloidal agnps
8
bacterial virulence
8
virulence factors
8
agnps
7
tuning antibacterial
4

Similar Publications

We aimed to synthesize silver nanoparticles (AgNPs) using (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, -AgNPs, and the insecticide ATCBRA-commonly used for pest control-on the root system of (broad bean). The chemical composition of the aqueous cardamom extract was identified and quantified using GC-MS, revealing a variety of bioactive compounds also present in cardamom essential oil. These included α-terpinyl acetate (21.

View Article and Find Full Text PDF

Background: The increasing prevalence of antibiotic-resistant bacteria necessitates exploring nanotechnology as a potential solution for microbial elimination.

Objectives: This study aimed to investigate the antimicrobial and antioxidant effects of silver nanoparticles synthesized using aqueous extract from the Ephedra gerardiana (E. gerardiana) plant (EG@AgNPs).

View Article and Find Full Text PDF

The isolated Aspergillus flavus NSRN22 was used for green synthesis of silver and selenium nanoparticles (AgNPs and SeNPs). New food packaging films produced by combining each type of NPs with chitosan (CS) or sodium alginate (SA) were characterized. Transmission electron microscopy revealed that the average particle size was lower in case of AgNPs (9 to 14.

View Article and Find Full Text PDF

Ocimum gratissimum mediated synthesis of AgNPs - An in vitro analysis of anti-inflammatory and antimicrobial effects.

Med J Malaysia

January 2025

Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India.

Introduction: Silver nanoparticles (AgNPs) are effective against almost all kinds of pathogenic organisms. The green synthesis of AgNPs utilizing extracts from medicinal plants is being researched to examine the therapeutic advantages of AgNPs because the chemical production of AgNPs is more toxic. In this study, the stem extract of Ocimum Gratissimum (OG) also known as Karunthulasi or wild basil for green synthesis of AgNPs and evaluating their antiinflammatory and antimicrobial effects.

View Article and Find Full Text PDF

The green synthesis of silver nanoparticles (AgNPs) using plant extracts is an eco-friendly method with potential for biomedical and environmental applications. This study aims to synthesize silver nanoparticles (SO-AgNPs) using L. extract and evaluate their antioxidant and antibacterial properties, positioning them as candidates for applications in sustainable biomedicine and wastewater treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!