5'tiRNA-33-CysACA-1 promotes septic cardiomyopathy by targeting PGC-1α-mediated mitochondrial biogenesis.

Int J Biochem Cell Biol

Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China. Electronic address:

Published: December 2024

Background: We revealed for the first time that the expression of 158 tRNA-derived small RNAs (tsRNAs) was altered in septic cardiomyopathy (SCM) by microarray analysis, and we selected 5'tiRNA-33-CysACA-1, which was the most significantly up-regulated, as a representative to explore the roles and mechanisms of tsRNAs in SCM.

Methods: We constructed a sepsis model by cecum ligation and puncture (CLP) in mice and detected the expression of 5'tiRNA-33-CysACA-1 using quantitative real-time PCR (qRT-PCR). The supernatant generated after LPS stimulation of macrophages was used as the conditional medium (CM) to stimulate H9C2 and established the injured cell model. CCK-8 and LDH release assays were used to detect cell viability and cell death. Mitochondrial membrane potential (MMP), ATP production, ROS production, and Mitotracker Red mitochondrial morphology were assayed to assess mitochondrial function. Expression of mRNA for molecules related to the mitochondrial quality control system was verified by qRT-PCR. The mechanism by which 5'tiRNA-33-CysACA-1 regulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) expression was examined by western blot, mRNA stability analysis, and rescue experiments.

Results: Expression of 5'tiRNA-33-CysACA-1 was elevated in cardiac tissue and H9C2 cells during septic myocardial injury. Stimulation of the CM resulted in cardiomyocyte injury and impaired mitochondrial function. Transfection of 5'tiRNA-33-CysACA-1 mimic in CM further downregulated PGC-1α expression, inhibited mitochondrial biogenesis thereby impairing mitochondrial function and leading to decreased cardiomyocyte activity and increased cell death. In contrast, transfection of the inhibitor ameliorated the above biological processes. In addition, mRNA stability assay and bioinformatics analysis showed that 5'tiRNA-33-CysACA-1 led to a decrease in the stability of PGC-1α mRNA, which in turn downregulated the expression of PGC-1α and promoted the development of SCM.

Conclusions: 5'tiRNA-33-CysACA-1 expression is upregulated in SCM and inhibits mitochondrial biogenesis by targeting PGC-1α and decreasing the stability of PGC-1α mRNA, leading to mitochondrial dysfunction and promoting the development of SCM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2024.106714DOI Listing

Publication Analysis

Top Keywords

mitochondrial biogenesis
12
mitochondrial function
12
mitochondrial
10
5'tirna-33-cysaca-1
8
septic cardiomyopathy
8
expression
8
expression 5'tirna-33-cysaca-1
8
cell death
8
pgc-1α expression
8
mrna stability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!