Background: We revealed for the first time that the expression of 158 tRNA-derived small RNAs (tsRNAs) was altered in septic cardiomyopathy (SCM) by microarray analysis, and we selected 5'tiRNA-33-CysACA-1, which was the most significantly up-regulated, as a representative to explore the roles and mechanisms of tsRNAs in SCM.
Methods: We constructed a sepsis model by cecum ligation and puncture (CLP) in mice and detected the expression of 5'tiRNA-33-CysACA-1 using quantitative real-time PCR (qRT-PCR). The supernatant generated after LPS stimulation of macrophages was used as the conditional medium (CM) to stimulate H9C2 and established the injured cell model. CCK-8 and LDH release assays were used to detect cell viability and cell death. Mitochondrial membrane potential (MMP), ATP production, ROS production, and Mitotracker Red mitochondrial morphology were assayed to assess mitochondrial function. Expression of mRNA for molecules related to the mitochondrial quality control system was verified by qRT-PCR. The mechanism by which 5'tiRNA-33-CysACA-1 regulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) expression was examined by western blot, mRNA stability analysis, and rescue experiments.
Results: Expression of 5'tiRNA-33-CysACA-1 was elevated in cardiac tissue and H9C2 cells during septic myocardial injury. Stimulation of the CM resulted in cardiomyocyte injury and impaired mitochondrial function. Transfection of 5'tiRNA-33-CysACA-1 mimic in CM further downregulated PGC-1α expression, inhibited mitochondrial biogenesis thereby impairing mitochondrial function and leading to decreased cardiomyocyte activity and increased cell death. In contrast, transfection of the inhibitor ameliorated the above biological processes. In addition, mRNA stability assay and bioinformatics analysis showed that 5'tiRNA-33-CysACA-1 led to a decrease in the stability of PGC-1α mRNA, which in turn downregulated the expression of PGC-1α and promoted the development of SCM.
Conclusions: 5'tiRNA-33-CysACA-1 expression is upregulated in SCM and inhibits mitochondrial biogenesis by targeting PGC-1α and decreasing the stability of PGC-1α mRNA, leading to mitochondrial dysfunction and promoting the development of SCM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2024.106714 | DOI Listing |
Future Microbiol
January 2025
Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China.
Prohibitins (PHBs) are members of a highly conserved family of proteins, including prohibitin1 and prohibitin2. These proteins are predominantly localized in mitochondria, the nucleus, and cell membranes, where they play critical roles in mitochondrial biogenesis, apoptosis, immune regulation, and other biological processes. Recent studies have demonstrated that both PHB1 and PHB2 can act as a complex or independently to participate in the pathogen infection process.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.
View Article and Find Full Text PDFExp Gerontol
January 2025
School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
Purpose: The study aims to investigate the therapeutic effects of the aqueous extract of Atractylodes macrocephala Koidz. (AEA) on dexamethasone (Dex) -induced sarcopenia in mice and to explore its possible mechanisms of action.
Methods: This study utilized bioinformatics analysis to explore the primary pathogenic mechanisms of age-related sarcopenia and Dex-induced muscle atrophy.
Biochim Biophys Acta Bioenerg
January 2025
Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy. Electronic address:
Circadian rhythms driven by biological clocks regulate physiological processes in all living organisms by anticipating daily geophysical changes, thus enhancing environmental adaptation. Time-resolved serial multi-omic analyses in vivo, ex vivo, and in synchronized cell cultures have revealed rhythmic changes in the transcriptome, proteome, and metabolome, involving up to 50 % of the mammalian genome. Mitochondrial oxidative metabolism is central to cellular bioenergetics, and many nuclear genes encoding mitochondrial proteins exhibit both circadian and ultradian oscillatory expression.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA.
The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!