Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photocatalytic water-splitting has gained significant global attention in recent years. However, identifying effective photocatalysts remains challenging due to the rapid recombination of photoinduced charge carriers. In this study, two-dimensional (2D) sandwich-like layer WO/TiC/ZnInS photocatalysts were successfully fabricated using a simple anaerobic solvothermal process. The 2D Z-scheme heterojunction enhances rapid charge transport via TiS or TiOW bonds, serving as efficient charge transfer channels and minimizing the distance for interfacial photocarrier transfer. Consequently, the hydrogen production rate of 20 % WO/TiC/ZnInS composite reaches 7.39 mmol·g·h, which is 3.5 and 7.1 times higher than that of 20 % TiC/ZnInS and pure ZnInS respectively. Furthermore, the hydrogen production rate of 20 % WO/TiC/ZnInS composite reaches 2.54 mmol·g·h without the use of sacrificial agents. This work paves the way for designing 2D sandwich-like Z-scheme heterostructures through interfacial chemical bonds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.11.238 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!