AI Article Synopsis

  • Microplastics in wastewater treatment plants act as hotspots for the proliferation of pathogens, antibiotic resistance genes (ARGs), and virulence factors (VFs), posing significant health risks.
  • Research found that the abundance of these harmful microorganisms and genetic elements in the plastisphere is 1.01-1.35 times higher than in the wastewater effluent.
  • Key microbial hosts and enhanced metabolic activities contribute to the enrichment of ARGs and VFs, underscoring the need for stricter controls on wastewater discharge to protect public health.

Article Abstract

Microplastics (MPs) are ubiquitous in wastewater treatment plants (WWTPs) and provide a unique niche for the spread of pollutants. To date, risk assessments and driving mechanisms of pathogens, antibiotic resistance genes (ARGs), and virulence factors (VFs) in the plastisphere are still lacking. Here, the microbiota, ARGs, VFs, their potential health risks, and biologically driving mechanisms on polythene (PE), polyethylene terephthalate (PET), poly (butyleneadipate-co-terephthalate) and polylactic acid blends (PBAT/PLA), PLA MPs, and gravel in WWTP effluent were investigated. The results showed that plastisphere and gravel biofilm harbored more distinctive microorganisms, promoting the uniqueness of pathogens, ARGs, and VFs compared to WWTP effluent. The abundance of major pathogens, ARGs, and VFs in the plastisphere was 1.01-1.35 times higher than that in the effluent. The high health risk of ARGs (HRA) calculated by fully considering the abundance, clinical relevance, pathogenicity, accessibility and mobility, and the high proportion of resistance contigs with mobile genetic elements confirmed that the plastisphere posed the highest potential health risk. Candidatus Microthrix and Candidatus Promineifilum were the essential hosts of ARGs and VFs in the plastisphere and gravel biofilm, respectively. High metabolic activity such as amino acid metabolism and biosynthesis of secondary metabolites, and highly expressed key genes increased the synthesis of ARGs and VFs. The primary mechanisms driving ARG enrichment in the plastisphere were enhanced microbial metabolic activity, increased frequency of horizontal gene transfer, heightened antibiotic inactivation and efflux, and reduced cell permeability. This study provided new insights into the ARGs, VFs, and health risks of the plastisphere and emphasized the importance of strict control of wastewater discharge.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122896DOI Listing

Publication Analysis

Top Keywords

args vfs
24
health risk
12
vfs plastisphere
12
antibiotic resistance
8
resistance genes
8
virulence factors
8
plastisphere
8
wastewater treatment
8
driving mechanisms
8
args
8

Similar Publications

Screening and Genomic Profiling of Antimicrobial Bacteria Sourced from Poultry Slaughterhouse Effluents: Bacteriocin Production and Safety Evaluation.

Genes (Basel)

December 2024

Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain.

Antimicrobial-resistant (AMR) pathogens represent a serious threat to public health, particularly in food production systems where antibiotic use remains widespread. As a result, alternative antimicrobial treatments to antibiotics are essential for effectively managing bacterial infections. This study aimed to identify and characterize novel antimicrobial peptides produced by bacteria, known as bacteriocins, as well as to recognize safe bacteriocin-producing strains, sourced from poultry slaughterhouse effluents.

View Article and Find Full Text PDF

Urban rivers are the main water bodies humans frequently come into contact with, so the risks posed are closely monitored. Antibiotic resistance genes (ARGs) residues in reclaimed water pose serious risks to human health. There are urgent needs to improve the understanding of distribution of and risks posed by ARGs in urban rivers.

View Article and Find Full Text PDF

Unravelling a Latent Pathobiome Across Coral Reef Biotopes.

Environ Microbiol

December 2024

Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.

Previous studies on disease in coral reef organisms have neglected the natural distribution of potential pathogens and the genetic factors that underlie disease incidence. This study explores the intricate associations between hosts, microbial communities, putative pathogens, antibiotic resistance genes (ARGs) and virulence factors (VFs) across diverse coral reef biotopes. We observed a substantial compositional overlap of putative bacterial pathogens, VFs and ARGs across biotopes, consistent with the 'everything is everywhere, but the environment selects' hypothesis.

View Article and Find Full Text PDF

Draft genome sequence of a co-harbouring bla and mcr-1.1 Escherichia coli phylogroup A isolate associated with patient colonisation in Ireland.

J Glob Antimicrob Resist

December 2024

Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland. Electronic address:

Objectives: While Escherichia coli phylogroup-A is typically associated with commensal strains, some isolates can harbour virulence and exhibit multidrug-resistant (MDR) phenotypes. We report the draft genome of a rare instance of carbapenem, fosfomycin and colistin resistant E. coli phylogroup-A, isolated as part of routine screening of a human patient in a clinical setting in Ireland.

View Article and Find Full Text PDF

Characterization of pathogen distribution and pathogenicity from landfill site.

J Hazard Mater

November 2024

Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China. Electronic address:

Landfills serve as significant environmental reservoirs for pathogens. This study investigated the abundance, distribution characteristics, and influencing factors of pathogens both within the landfill and its surrounding environment. The results unveiled contamination by pathogens in the external atmosphere (5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!