The ligand N-[(3-phenoxyphenyl)methylidene]-l-valine (HL) and its Co, Ni, Cu, and Zn derivatives (1-4) were synthesized and characterized. These compounds were tested for α-glucosidase and α-amylase inhibition activity, showing IC values of 10.51-51.36 µg/mL and 15.38-46.74 µg/mL, respectively, compared to Ascarbose. In silico molecular docking studies revealed strong binding affinities for α-glucosidase (-207.78 to -222.04 kcal/mol) and α-amylase (-159.5 to -161.82 kcal/mol), and potential anticancer activity against CDK2 (-119.6 to -126.53 kcal/mol). Antimicrobial assays against E. coli and C. albicans demonstrated significant activity, with inhibition zones of 12.5-16.8 mm and 13.5-20.05 mm, respectively. The results reveal a fascinating array of pharmacological properties of these compounds and suggest their potential for future drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.108010DOI Listing

Publication Analysis

Top Keywords

molecular docking
8
complexes n-[3-phenoxy
4
n-[3-phenoxy phenylmethylidene]-l-valine
4
phenylmethylidene]-l-valine α-glycosidase
4
α-glycosidase α-amylase
4
α-amylase inhibitors
4
inhibitors synthesis
4
synthesis molecular
4
docking antimicrobial
4
antimicrobial evaluation
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Edith Cowan University, Perth, Western Australia, Australia.

Background: Accumulation of amyloid beta 42 (Aβ42) senile plaques is the most critical event leading to Alzheimer's disease (AD). Currently approved drugs for AD have not been able to effectively modify the disease. This has caused increasing research interests in health beneficial nutritious plant foods as viable alternative therapy to prevent or manage AD.

View Article and Find Full Text PDF

Background: Studies suggest a potential link between stroke and Alzheimer's disease wherein stroke may serve as a trigger for the onset or acceleration of Alzheimer's pathogenesis as damage to the brain's blood vessels may lead to the accumulation of amyloid beta protein which is a hallmark of Alzheimer's disease. Recent research has shown that stroke treatment may hold the key to treating Alzheimer's disease. The anti-inflammatory potentials of Cholinergic signaling are a novel therapeutic target in memory decline associated with Alzheimer's.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.

Background: Alzheimer disease (AD) is a progressive neurodegenerative disease that is accountable for the leading case of dementia in elder people. Before, only symptomatic treatments are available for AD. Since 2021, two anti-amyloid antibodies aducanumab and lecanemab have been approved by the US Food and Drug Administration.

View Article and Find Full Text PDF

Background: Lyn kinase, a member of the Src family of tyrosine kinases, predominantly phosphorylates ITIM and ITAM motifs linked to immune receptors and adaptor proteins, and is emerging as a target for Alzheimer's disease (AD). The role of Lyn in TREM2-mediated microglial activation and phagocytosis, a critical pathway for clearing Aβ plaques, remains unclear and potent, selective, and brain penetrant Lyn inhibitors are unavailable. In this study, we report the characterization of Lyn kinase inhibitors from the literature as well as the establishment of an advanced virtual screening platform at the IUSM-Purdue-TREAT-AD center to identify new type II Lyn inhibitors suitable as molecular probes.

View Article and Find Full Text PDF

Background: Protein misfolding is a key pathological phenomenon driving neurodegenerative diseases that affect millions of people. Visualizing this misfolding process with smart imaging probes would greatly facilitate early diagnosis, etiology elucidation, disease progression monitoring, and drug discovery of neurodegeneration. Although numerous probes have been reported, several unmet needs still exist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!