The development of materials with high ambipolar mobility is pivotal for advancing multifunctional applications, yet such materials remain scarce. Presently, cubic boron arsenide (BAs) stands out as the premier ambipolar material, demonstrating an ambipolar mobility of ∼1600 cm V s at room temperature [ 2022, 377, 433 and 2022, 377, 437]. Herein, we illustrate that semiconducting AlBC, featuring a nonclathrate B-C framework in which a C atom bonds to the vertices of four distorted hexagonal antiprism B units via quasi-sp hybridization, is predicted to possess ambipolar carrier transport behavior. Its ambipolar mobility can reach up to ∼2095 cm V s. The hole transport originates from the C p orbitals that trap the electrons of Al atoms at the valence band maximum, forming a C-Al-C hole channel along the -axis direction, whereas electron transport stems from the π electrons in B units. For AlBC, polar optical phonon scattering serves as the primary mechanism limiting mobility. Additionally, it displays a high absorption coefficient (10 cm) in the visible spectrum. These appealing properties make AlBC a highly promising environmentally friendly semiconductor for applications in electronics and photovoltaic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c11164 | DOI Listing |
Chem Soc Rev
December 2024
Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
Organic semiconductor single crystals (OSSCs), which possess the inherent merits of long-range order, low defect density, high mobility, structural tunability and good flexibility, have garnered significant attention in the organic optoelectronic community. Past decades have witnessed the explosive growth of OSSCs. Despite numerous conceptual demonstrations, OSSCs remain in the early stages of implementation for applications that require high integration and multifunctionality.
View Article and Find Full Text PDFChem Asian J
December 2024
Vidyasirimedhi Institute of Science and Technology, Frontier research center, THAILAND.
Excited-state intramolecular proton transfer (ESIPT) molecules are promising fluorophores for various applications. Particularly, their self-absorption-free fluorescence properties would make them a perfect choice as emissive materials for organic light-emitting diodes (OLEDs). Nevertheless, to become effective emitters some of their properties need to be altered by structural modifications.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran 1461944563, Iran.
Tunnel field-effect transistors (TFETs) are gaining interest for low-power applications, but challenges like poor drive current, delayed saturation, and ambipolarity can hinder their performance. This work proposes a dopingless heterojunction TFET (DL-HTDET) utilizing advanced materials, all based on phosphorus, to address these issues. Our approach involves a comprehensive and accurate analysis of the DL-HTDET's behavior.
View Article and Find Full Text PDFSmall Methods
December 2024
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector 81 Manauli PO, SAS Nagar, 140306, India.
The future of next-generation electronics relies on low-cost organic semiconductors that are tailored to simultaneously provide all requisite optoelectronic properties, focusing greatly on ambipolar charge-transport and solution processability. In this regard, room-temperature discotic liquid crystals (DLCs) are potential candidates, where quasi-1D self-assembly affords a charge-transport channel along their columnar axis. This work shows a molecular design strategy by utilizing anthraquinone as the primary motif, surrounded by ester functionalized tri-alkoxy phenyl units to develop room-temperature DLCs (1.
View Article and Find Full Text PDFChemistry
December 2024
Indian Institute of Technology Guwahati, Chemistry, Guwahati, 781039, Guwahati, INDIA.
This study presents a selenium-annulated perylene bisimide (PBI-SeST) stabilizing room temperature columnar hexagonal phase with exceptionally low clearing temperature. The synthesis of this Se-annulated PBI (PBI-SeST) was accomplished using the reductive Cadogan cyclization method, with the introduction of swallow tails to reduce the clearing temperature and improve solubility. In addition, the charge carrier mobility of the Se-bay annulated PBI is assessed by space charge limited current (SCLC) technique and juxtaposed with PBI as well as nitrogen and sulphur-bay-annulated PBIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!