AI Article Synopsis

  • * Various assays demonstrated that reducing AKR1B1 levels inhibited the growth and survival of acute leukemia cells, confirming its high expression in these cells and its role in promoting cell proliferation and preventing apoptosis.
  • * RNA-sequencing revealed that AKR1B1 affects the expression of certain genes linked to leukemia, and combining AKR1B1 knockdown with EZH2 inhibition showed a promising synergistic effect, indicating that targeting AKR1B1 may be a new therapeutic approach for treating acute leukemia.

Article Abstract

AKR1B1 is a member of aldo-keto-reductase (AKR) superfamily which catalyze the reduction of carbonyl groups to hydroxyl groups in NADPH-dependent ways. Previous studies have shown that AKR1B1 promotes cancer progression, but its exact role in acute leukemia was unclear. Cell counting and Luminescent Cell Viability Assay were performed to measure the cell proliferation and viability. Soft-Agar Colony Formation (CFU) assay was conducted to measure the capacity of single cells to form colonies in vitro. Cell apoptosis, cell cycle, and cell differentiation were assessed by flow cytometry. Western blotting and RT-qPCR were utilized to examine AKR1B1 expression in acute leukemia cells. In vivo leukemia growth and mouse survival were evaluated using a model of xenotransplantation mice. We explored the AKR1B1 effect and mechanism in acute leukemia cells using RNA-sequencing technology and transcriptomic analysis. AKR1B1 is highly expressed in acute leukemia cells. Knockdown of AKR1B1 inhibited acute leukemia cell proliferation, colony-forming capability, and cell cycle and promoted apoptosis. Additionally, xenograft experiments proved that knockdown of AKR1B1 delayed the progression of acute leukemia cell in vivo. RNA-sequencing data analysis demonstrated that AKR1B1 was involved in the epigenetic silencing of H3K27me3-targeted genes. EZH2 inhibitor UNC1999 combined with knockdown of AKR1B1 showed synergistic inhibitory effect on acute leukemia cells. AKR1B1 is essential for the leukemogenesis and may serve as a potential therapeutic target to treat acute leukemia patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10528-024-10984-2DOI Listing

Publication Analysis

Top Keywords

acute leukemia
36
leukemia cells
16
leukemia cell
12
knockdown akr1b1
12
akr1b1
11
leukemia
10
cell
10
acute
9
epigenetic silencing
8
cell proliferation
8

Similar Publications

Background: The sensitivity of reverse-transcription polymerase chain reaction (RT-PCR) is limited for diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Chest computed tomography (CT) is reported to have high sensitivity; however, given the limited availability of chest CT during a pandemic, the assessment of more readily available imaging, such as chest radiographs, augmented by artificial intelligence may substitute for the detection of the features of coronavirus disease 2019 (COVID-19) pneumonia.

Methods: We trained a deep convolutional neural network to detect SARS-CoV-2 pneumonia using publicly available chest radiography imaging data including 8,851 normal, 6,045 pneumonia, and 200 COVID-19 pneumonia radiographs.

View Article and Find Full Text PDF

PAGE-based transfer learning from single-cell to bulk sequencing enhances model generalization for sepsis diagnosis.

Brief Bioinform

November 2024

Guangdong Provincial Clinical Research Center for Geriatrics; Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, 1017 Dongmen Rd N, Luohu District, Shenzhen 518020, China.

Sepsis, caused by infections, sparks a dangerous bodily response. The transcriptional expression patterns of host responses aid in the diagnosis of sepsis, but the challenge lies in their limited generalization capabilities. To facilitate sepsis diagnosis, we present an updated version of single-cell Pair-wise Analysis of Gene Expression (scPAGE) using transfer learning method, scPAGE2, dedicated to data fusion between single-cell and bulk transcriptome.

View Article and Find Full Text PDF

Fluorescent biosensor for ultra-stability detection of Pax-5a based on a double cascade amplification strategy.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China. Electronic address:

The development of B-lymphoblastic leukemia is tightly associated with aberrant expression of Pax-5a. This work presented a novel dual signal amplification strategy-based Pax-5a detection method by combining the rolling circle amplification reaction (RCA) and the Entropy-driven toehold-mediated strand displacement (ETSD). Particularly noteworthy is the employed ETSD, which effectively improves the rate and stability of the reaction due to its unique entropy-driven principle.

View Article and Find Full Text PDF

Ginsenoside Rh2 promotes cell apoptosis in T-cell acute lymphocytic leukaemia by MAPK and PI3K/AKT signalling pathways.

Nat Prod Res

December 2024

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.

T-cell acute lymphoblastic leukaemia (T-ALL) is a common childhood malignant tumour, which has poor prognosis and high recurrence rate. Ginsenoside Rh2 (GRh2), a bioactive ingredient of has significant anti-tumour effect. In this study, we found that gene expressions of Jurkat cells were significantly changed in the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signalling pathways after 35 µm GRh2 treatment, involving in JUN, PIEN, AKT3 and MAPK8IP2.

View Article and Find Full Text PDF

A human-like glutaminase-free asparaginase is highly efficacious in ASNS leukemia and solid cancer mouse xenograft models.

Cancer Lett

December 2024

Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, USA; Enzyme by Design Inc., Chicago, USA; Research Biologist, Biological Science Research and Development, Department of Veterans Affairs Medical Center, Chicago, Illinois, USA. Electronic address:

L-asparaginase (L-ASNase) is crucial in treating pediatric acute lymphoblastic leukemia (ALL), but its use is hampered by side effects from the immunogenicity and L-glutaminase (L-GLNase) co-activity of FDA-approved bacterial L-ASNases, often leading to treatment discontinuation and poor outcomes. The toxicity of these L-ASNases makes them especially challenging to use in adult cancer patients. To overcome these issues, we developed EBD-200, a humanized guinea pig L-ASNase with low Km and no L-GLNase activity, eliminating glutamine-related toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!