Cadmium (Cd), recognized as an environmental toxin, can cause injury to the testis in humans and animals. Oxidative stress (OS) can trigger an inflammatory response by promoting the activation of nuclear factor kappa beta (NF-κB) signaling pathway. Meanwhile, inflammation can lead to the occurrence of heat shock reaction. Yet, the specific mechanism by which Cd causes testicular injury in piglets, as well as the roles of oxidative stress, NF-κB signaling pathway, and heat shock response, still remained unclear. In this study, 6-week-old male piglets were selected as the experimental subjects, and the testicular injury model was developed by adding CdCl (20 mg/kg) to the feed. After 40 days, piglets were euthanized, and testis tissues were collected for the following experimental analysis (the ultrastructural characteristics, antioxidant levels, trace element concentrations, and molecular-level changes). The findings displayed that Cd exposure caused the widening of the perinuclear space and the fragmentation of the nuclear membrane in testis. In addition, Cd exposure increased the contents of Cd, iron (Fe), and manganese (Mn), while the contents of selenium (Se), calcium (Ca), zinc (Zn), and copper (Cu) were reduced in testis. The activities of oxidative enzymes inducible nitric oxide synthase (iNOS), hydrogen peroxide (HO), malondialdehyde (MDA), and nitric oxide (NO) were enhanced in testis after Cd exposure; meanwhile, the activities of antioxidant enzymes catalase (CAT), glutathione (GSH), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) were reduced. And Cd exposure led to an upregulation of NF-κB, iNOS, interleukin 6 (IL-6), and cyclooxygenase-2 (COX-2) at both the mRNA and protein levels and increased the fluorescence intensity of the heat shock proteins (HSPs) HSP60, HSP70, and HSP90 in the testis. Altogether, Cd exposure induced toxic damage to piglet testis and potentially triggered inflammation through the oxidative stress/NF-κB signaling pathway and then resulted in heat shock response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-024-04470-4 | DOI Listing |
Sci Rep
December 2024
Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.
The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.
View Article and Find Full Text PDFNat Commun
December 2024
Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.
View Article and Find Full Text PDFNat Commun
December 2024
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biochemistry, McGill University, Montreal, QC, Canada.
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
Maintenance of protein homeostasis is necessary for cell viability and depends on a complex network of chaperones and co-chaperones, including the heat-shock protein 70 (Hsp70) system. In human mitochondria, mitochondrial Hsp70 (mortalin) and the nucleotide exchange factor (GrpEL1) work synergistically to stabilize proteins, assemble protein complexes, and facilitate protein import. However, our understanding of the molecular mechanisms guiding these processes is hampered by limited structural information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!