Identification of new salicylic acid signaling regulators for root development and microbiota composition in plants.

J Integr Plant Biol

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Published: December 2024

AI Article Synopsis

  • Salicylic acid (SA) is important for plant immunity and also influences root growth, but the mechanisms behind this in roots are not well understood.
  • * Researchers discovered that NPR1 and WRKY45, key players in SA responses in rice leaves, only partially regulate root SA signaling.
  • * A new pathway that operates independently of NPR1 and WRKY45 was identified, revealing additional regulators that affect root development and microbial interactions in both rice and Arabidopsis in response to SA.

Article Abstract

Besides playing a crucial role in plant immunity via the nonexpressor of pathogenesis-related (NPR) proteins, increasing evidence shows that salicylic acid (SA) can also regulate plant root growth. However, the transcriptional regulatory network controlling this SA response in plant roots is still unclear. Here, we found that NPR1 and WRKY45, the central regulators of SA response in rice leaves, control only a reduced sector of the root SA signaling network. We demonstrated that SA attenuates root growth via a novel NPR1/WRKY45-independent pathway. Furthermore, using regulatory network analysis and mutant characterization, we identified a set of new NPR1/WRKY45-independent regulators that conservedly modulate the root development and root-associated microbiota composition in both Oryza sativa (monocot) and Arabidopsis thaliana (dicot) in response to SA. Our results established the SA signaling as a central element regulating plant root functions under ecologically relevant conditions. These results provide new insights to understand how regulatory networks control plant responses to abiotic and biotic stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jipb.13814DOI Listing

Publication Analysis

Top Keywords

salicylic acid
8
root development
8
microbiota composition
8
plant root
8
root growth
8
regulatory network
8
root
6
plant
5
identification salicylic
4
acid signaling
4

Similar Publications

Strawberries, known for their antioxidant properties, exhibit changes in physiology and metabolite profiles based on cultivation techniques. In Indonesia, strawberries are typically grown in highland regions, but climate change has necessitated adjustments in cultivation practices to enhance production and quality. This study investigates the adaptation of strawberry plants in lowland environments using light-emitting diodes (LEDs) and the exogenous application of methyl jasmonate (MeJA) and methyl salicylic acid (MeSA).

View Article and Find Full Text PDF

Proteomic Profiling and Pre-Clinical Efficacy of Antimicrobial Lithium Complex and Colistin Combination against Multi-drug Resistant Acinetobacter baumannii.

Microb Pathog

January 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. Electronic address:

Multi-drug resistant (MDR) Acinetobacter baumannii accounts for high mortality rates in hospital-acquired infections. Colistin is the last resort treatment despite nephrotoxic effects and the emergence of colistin resistant A. baumannii.

View Article and Find Full Text PDF

Androgenic alopecia (AGA), the most prevalent type of progressive hair loss, currently lacks an effective topical treatment regimen. In this study, we synthesized an ionic liquid (IL) to co-solubilize minoxidil (MXD) and finasteride (FIN) and subsequently formulated them into an in situ thermosensitive ionic liquid/cyclodextrin/poloxamer hydrogel (ICPG), termed M + F@ICPG. M + F@ICPG was developed for the transdermal co-delivery of these two drugs, aiming to provide a multipath therapeutic approach for AGA while avoiding the adverse effects commonly associated with oral FIN and topical MXD tincture.

View Article and Find Full Text PDF

New potential susceptibility factors contributing to tomato bacterial spot disease.

J Proteomics

January 2025

Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil. Electronic address:

The label-free shotgun proteomics analysis carried out in this study aimed to understand the molecular mechanisms that contribute towards tomato susceptibility to Xanthomonas euvesicatoria pv. perforans (Xep). To achieve this, comparative proteomics was performed on susceptible inoculated plants with the bacterium and the control group (saline solution) at 24 and 48 h after inoculation (hai).

View Article and Find Full Text PDF

Freshwater depletion becomes a significant challenge as the population grows and food demand rises. We evaluated the responses of lettuce cultivars () under saline stress in photosynthetic responses, production, and ion homeostasis. We used a randomized block design in a 3 × 5 factorial scheme with five replications-the first factor: three cultivars of curly lettuce: SVR 2005, Simpson, and Grand Rapids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!